Robust Inference In Time-Varying Structural VAR Models: The DC-Cholesky Multivariate Stochastic Volatility Model

Benny Hartwig
{"title":"Robust Inference In Time-Varying Structural VAR Models: The DC-Cholesky Multivariate Stochastic Volatility Model","authors":"Benny Hartwig","doi":"10.2139/ssrn.3466739","DOIUrl":null,"url":null,"abstract":"This paper investigates how the ordering of variables affects properties of the time-varying covariance matrix in the Cholesky multivariate stochastic volatility model. It establishes that systematically different dynamic restrictions are imposed when the ratio of volatilities is time-varying. Simulations demonstrate that estimated covariance matrices become more divergent when volatility clusters idiosyncratically. It is illustrated that this property is important for empirical applications. Specifically, alternative estimates on the evolution of U.S. systematic monetary policy and inflation-gap persistence indicate that conclusions may critically hinge on a selected ordering of variables. The dynamic correlation Cholesky multivariate stochastic volatility model is proposed as a robust alternative.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3466739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper investigates how the ordering of variables affects properties of the time-varying covariance matrix in the Cholesky multivariate stochastic volatility model. It establishes that systematically different dynamic restrictions are imposed when the ratio of volatilities is time-varying. Simulations demonstrate that estimated covariance matrices become more divergent when volatility clusters idiosyncratically. It is illustrated that this property is important for empirical applications. Specifically, alternative estimates on the evolution of U.S. systematic monetary policy and inflation-gap persistence indicate that conclusions may critically hinge on a selected ordering of variables. The dynamic correlation Cholesky multivariate stochastic volatility model is proposed as a robust alternative.
时变结构VAR模型的鲁棒推断:DC-Cholesky多元随机波动模型
本文研究了变量的排序如何影响Cholesky多元随机波动模型中时变协方差矩阵的性质。建立了当波动率随时间变化时,系统地施加不同的动态约束。仿真结果表明,当波动率具有特异性聚类时,估计的协方差矩阵变得更加发散。说明这一性质对于经验应用是重要的。具体而言,对美国系统性货币政策演变和通胀缺口持续性的替代估计表明,结论可能严重取决于选定的变量顺序。提出了动态相关Cholesky多元随机波动模型作为鲁棒性替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信