Fine-grained entity typing for knowledge base completion

Yidong Jia, Weiran Xu, Pengda Qin, Zuyi Bao
{"title":"Fine-grained entity typing for knowledge base completion","authors":"Yidong Jia, Weiran Xu, Pengda Qin, Zuyi Bao","doi":"10.1109/ICNIDC.2016.7974597","DOIUrl":null,"url":null,"abstract":"Most work on knowledge base completion focuses on relations between entities, while entity types are also important knowledge. This paper addresses the problem of fine-grained entity typing for knowledge base completion. Context information plays a vital role in fine-grained entity typing, hence there is an urgent need to find ideal context representations. This paper presents a new approach CNNJM (convolutional neural network joint model) to learn the embeddings of the entities and their contextual information using convolutional neural network and correctly categorize the entities into their fine-grained type classes. We show that CNNJM outperforms state-of-art methods on a fine-grained entity typing benchmark.","PeriodicalId":439987,"journal":{"name":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2016.7974597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Most work on knowledge base completion focuses on relations between entities, while entity types are also important knowledge. This paper addresses the problem of fine-grained entity typing for knowledge base completion. Context information plays a vital role in fine-grained entity typing, hence there is an urgent need to find ideal context representations. This paper presents a new approach CNNJM (convolutional neural network joint model) to learn the embeddings of the entities and their contextual information using convolutional neural network and correctly categorize the entities into their fine-grained type classes. We show that CNNJM outperforms state-of-art methods on a fine-grained entity typing benchmark.
用于知识库完成的细粒度实体类型
知识库补全的大部分工作集中在实体之间的关系上,而实体类型也是重要的知识。本文解决了用于知识库补全的细粒度实体类型问题。上下文信息在细粒度实体类型中起着至关重要的作用,因此迫切需要找到理想的上下文表示。本文提出了一种新的方法CNNJM(卷积神经网络联合模型),利用卷积神经网络学习实体及其上下文信息的嵌入,并将实体正确地分类到它们的细粒度类型类中。我们展示了CNNJM在细粒度实体类型基准测试上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信