Tibetan Text Classification Algorithm Based on Syllables

Xianghe Meng, Hongzhi Yu, Hui Cao
{"title":"Tibetan Text Classification Algorithm Based on Syllables","authors":"Xianghe Meng, Hongzhi Yu, Hui Cao","doi":"10.1109/ICISCAE51034.2020.9236833","DOIUrl":null,"url":null,"abstract":"Tibetan text classification is one of the core technologies in the field of Tibetan information processing. With the rapid development of the Internet, a large amount of Tibetan Internet text data will be generated every day. Text classification technology can quickly and accurately obtain the required information to solve the problem of out-of-order in text. Tibetan syllables are the basic components of Tibetan text, and each syllable in Tibetan is divided by syllable nodes. This paper proposes a Tibetan syllable as a text representation feature, and uses deep neural network models such as CNN, BiL STM and RCNN to classify Tibetan text. Experiments show that this method has achieved prefect results in different depth neural network classification models.","PeriodicalId":355473,"journal":{"name":"2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCAE51034.2020.9236833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tibetan text classification is one of the core technologies in the field of Tibetan information processing. With the rapid development of the Internet, a large amount of Tibetan Internet text data will be generated every day. Text classification technology can quickly and accurately obtain the required information to solve the problem of out-of-order in text. Tibetan syllables are the basic components of Tibetan text, and each syllable in Tibetan is divided by syllable nodes. This paper proposes a Tibetan syllable as a text representation feature, and uses deep neural network models such as CNN, BiL STM and RCNN to classify Tibetan text. Experiments show that this method has achieved prefect results in different depth neural network classification models.
基于音节的藏文文本分类算法
藏文文本分类是藏文信息处理领域的核心技术之一。随着互联网的快速发展,每天都会产生大量的藏文互联网文本数据。文本分类技术可以快速准确地获取所需信息,解决文本中的无序问题。藏文音节是藏文文本的基本组成部分,每个音节由音节节点划分。本文提出一个藏文音节作为文本表示特征,并利用CNN、BiL STM和RCNN等深度神经网络模型对藏文文本进行分类。实验表明,该方法在不同深度的神经网络分类模型中都取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信