Performance Analysis of Scientific Computing Workloads on General Purpose TEEs

Ayaz Akram, Anna Giannakou, V. Akella, Jason Lowe-Power, S. Peisert
{"title":"Performance Analysis of Scientific Computing Workloads on General Purpose TEEs","authors":"Ayaz Akram, Anna Giannakou, V. Akella, Jason Lowe-Power, S. Peisert","doi":"10.1109/IPDPS49936.2021.00115","DOIUrl":null,"url":null,"abstract":"Scientific computing sometimes involves computation on sensitive data. Depending on the data and the execution environment, the HPC (high-performance computing) user or data provider may require confidentiality and/or integrity guarantees. To study the applicability of hardware-based trusted execution environments (TEEs) to enable secure scientific computing, we deeply analyze the performance impact of general purpose TEEs, AMD SEV, and Intel SGX, for diverse HPC benchmarks including traditional scientific computing, machine learning, graph analytics, and emerging scientific computing workloads. We observe three main findings: 1) SEV requires careful memory placement on large scale NUMA machines (1×–3.4× slowdown without and 1×–1.15× slowdown with NUMA aware placement), 2) virtualization—a prerequisite for SEV— results in performance degradation for workloads with irregular memory accesses and large working sets (1×–4× slowdown compared to native execution for graph applications) and 3) SGX is inappropriate for HPC given its limited secure memory size and inflexible programming model (1.2×–126× slowdown over unsecure execution). Finally, we discuss forthcoming new TEE designs and their potential impact on scientific computing.","PeriodicalId":372234,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS49936.2021.00115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Scientific computing sometimes involves computation on sensitive data. Depending on the data and the execution environment, the HPC (high-performance computing) user or data provider may require confidentiality and/or integrity guarantees. To study the applicability of hardware-based trusted execution environments (TEEs) to enable secure scientific computing, we deeply analyze the performance impact of general purpose TEEs, AMD SEV, and Intel SGX, for diverse HPC benchmarks including traditional scientific computing, machine learning, graph analytics, and emerging scientific computing workloads. We observe three main findings: 1) SEV requires careful memory placement on large scale NUMA machines (1×–3.4× slowdown without and 1×–1.15× slowdown with NUMA aware placement), 2) virtualization—a prerequisite for SEV— results in performance degradation for workloads with irregular memory accesses and large working sets (1×–4× slowdown compared to native execution for graph applications) and 3) SGX is inappropriate for HPC given its limited secure memory size and inflexible programming model (1.2×–126× slowdown over unsecure execution). Finally, we discuss forthcoming new TEE designs and their potential impact on scientific computing.
通用tee上科学计算工作负载的性能分析
科学计算有时涉及对敏感数据的计算。根据数据和执行环境的不同,HPC(高性能计算)用户或数据提供者可能需要保密性和/或完整性保证。为了研究基于硬件的可信执行环境(tee)在实现安全科学计算方面的适用性,我们深入分析了通用tee、AMD SEV和英特尔SGX对各种高性能计算基准的性能影响,包括传统科学计算、机器学习、图形分析和新兴科学计算工作负载。我们观察到三个主要发现:1) SEV需要在大规模NUMA机器上仔细放置内存(1×-3.4×没有NUMA的减速和1×-1.15× NUMA感知的减速)。2)虚拟化——SEV的先决条件——会导致具有不规则内存访问和大型工作集的工作负载的性能下降(1×-4×与图形应用程序的本机执行相比速度变慢);3)SGX不适合HPC,因为它的安全内存大小有限,编程模型不灵活(1.2×-126×不安全执行速度变慢)。最后,我们讨论了即将到来的新的TEE设计及其对科学计算的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信