Gaussian Mixture Models For Robust Unsupervised Scanning-Electron Microscopy Image Segmentation Of North Sea Chalk

J. Dramsch, F. Amour, M. Lüthje
{"title":"Gaussian Mixture Models For Robust Unsupervised Scanning-Electron Microscopy Image Segmentation Of North Sea Chalk","authors":"J. Dramsch, F. Amour, M. Lüthje","doi":"10.3997/2214-4609.201803014","DOIUrl":null,"url":null,"abstract":"Scanning-Electron images from North Sea Chalk are studied for important rock properties. To relieve this manual labor, we investigated several standard image processing methods that underperformed on complicated chalk. Due to the lack of manually labeled data, deep neural networks could not be adequately applied. Gaussian Mixture Models learnt a two-fold representation that separated the background well from the rock. Subsequent morphological filtering cleans up the prediction and enables automatic analysis.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Scanning-Electron images from North Sea Chalk are studied for important rock properties. To relieve this manual labor, we investigated several standard image processing methods that underperformed on complicated chalk. Due to the lack of manually labeled data, deep neural networks could not be adequately applied. Gaussian Mixture Models learnt a two-fold representation that separated the background well from the rock. Subsequent morphological filtering cleans up the prediction and enables automatic analysis.
基于高斯混合模型的无监督扫描电镜图像分割
研究了北海白垩的扫描电子图像,发现了重要的岩石性质。为了减轻这种体力劳动,我们研究了几种标准图像处理方法,这些方法在复杂的粉笔上表现不佳。由于缺乏人工标记的数据,深度神经网络不能得到充分的应用。高斯混合模型学习了一种双重表示,可以很好地将背景与岩石分开。随后的形态过滤清理预测并启用自动分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信