CROSS CORPUS SPEECH EMOTION RECOGNITION

P. M, A. Milton
{"title":"CROSS CORPUS SPEECH EMOTION RECOGNITION","authors":"P. M, A. Milton","doi":"10.1109/ICRAECC43874.2019.8994984","DOIUrl":null,"url":null,"abstract":"Speech emotion recognition (SER) system plays a major role in human machine interaction. The emotion detection is natural for humans, but for machines it is tedious. Thus the proposed system aims to improve human machine interaction using emotion related information. In this paper, Mel Frequency Cepstral Coefficient (MFCC) feature is extracted from speech signal and Support Vector Machine (SVM) classifier is used to classify emotions. Performance analysis is done by considering different combinations of training and testing database and the databases considered here are Berlin, Enterface and RAVDESS.","PeriodicalId":137313,"journal":{"name":"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAECC43874.2019.8994984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Speech emotion recognition (SER) system plays a major role in human machine interaction. The emotion detection is natural for humans, but for machines it is tedious. Thus the proposed system aims to improve human machine interaction using emotion related information. In this paper, Mel Frequency Cepstral Coefficient (MFCC) feature is extracted from speech signal and Support Vector Machine (SVM) classifier is used to classify emotions. Performance analysis is done by considering different combinations of training and testing database and the databases considered here are Berlin, Enterface and RAVDESS.
跨语料库语音情感识别
语音情感识别系统在人机交互中起着重要的作用。情感检测对人类来说很自然,但对机器来说却很乏味。因此,提出的系统旨在利用情感相关信息改善人机交互。本文从语音信号中提取Mel频率倒谱系数(MFCC)特征,并使用支持向量机(SVM)分类器对情绪进行分类。性能分析是通过考虑训练和测试数据库的不同组合来完成的,这里考虑的数据库是Berlin、Enterface和RAVDESS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信