{"title":"Co-Administration of Combretastatin A4 Nanoparticles and Sorafenib for Systemic Therapy of Hepatocellular Carcinoma","authors":"Yalin Wang, Haiyang Yu, Dawei Zhang, Guanyi Wang, Wantong Song, Yingmin Liu, Sheng Ma, Zhaohui Tang, Ziling Liu, K. Sakurai, Xuesi Chen","doi":"10.2139/ssrn.3325395","DOIUrl":null,"url":null,"abstract":"Effective systemic therapy is highly desired for the treatment of hepatocellular carcinoma (HCC). In this study, a combination of nanoparticles of poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4 sodium salt (CA4-NPs) plus sorafenib is developed for the cooperative systemic treatment of HCC. The CA4-NPs leads to the disruption of established tumor blood vessels and extensive tumor necrosis, however, inducing increased expression of VEGF-A and angiogenesis. Sorafenib reduces the VEGF-A induced angiogenesis and further inhibits tumor proliferation, cooperating with the CA4-NPs. A significant decrease in tumor volume and prolonged survival time are observed in the combination group of CA4-NPs plus sorafenib compared with CA4-NPs or sorafenib monotherapy in subcutaneous and orthotopic H22 hepatic tumor models. Seventy-one percent of the mice are alive without residual tumor at 96 days post tumor inoculation for the subcutaneous models treated with CA4-NPs 30 or 35 mg·kg-1 plus sorafenib 30 mg·kg-1. Our findings suggest that co-administration of sorafenib and CA4-NPs possesses significant antitumor efficacy for HCC treatment. STATEMENT OF SIGNIFICANCE: Effective systemic therapy is highly desired for the treatment of hepatocellular carcinoma (HCC). Herein, we demonstrate that a combination of nanoparticles of poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4 sodium salt (CA4-NPs) plus sorafenib is a promising synergistic approach for systemic treatment of HCC. The CA4-NPs leads to the disruption of established tumor blood vessels and extensive tumor necrosis, however, inducing increased expression of VEGF-A and angiogenesis. Sorafenib reduces the VEGF-A induced angiogenesis and further inhibits tumor proliferation, cooperating with the CA4-NPs.","PeriodicalId":326657,"journal":{"name":"MatSciRN: Other Nanomaterials (Topic)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Other Nanomaterials (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3325395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Effective systemic therapy is highly desired for the treatment of hepatocellular carcinoma (HCC). In this study, a combination of nanoparticles of poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4 sodium salt (CA4-NPs) plus sorafenib is developed for the cooperative systemic treatment of HCC. The CA4-NPs leads to the disruption of established tumor blood vessels and extensive tumor necrosis, however, inducing increased expression of VEGF-A and angiogenesis. Sorafenib reduces the VEGF-A induced angiogenesis and further inhibits tumor proliferation, cooperating with the CA4-NPs. A significant decrease in tumor volume and prolonged survival time are observed in the combination group of CA4-NPs plus sorafenib compared with CA4-NPs or sorafenib monotherapy in subcutaneous and orthotopic H22 hepatic tumor models. Seventy-one percent of the mice are alive without residual tumor at 96 days post tumor inoculation for the subcutaneous models treated with CA4-NPs 30 or 35 mg·kg-1 plus sorafenib 30 mg·kg-1. Our findings suggest that co-administration of sorafenib and CA4-NPs possesses significant antitumor efficacy for HCC treatment. STATEMENT OF SIGNIFICANCE: Effective systemic therapy is highly desired for the treatment of hepatocellular carcinoma (HCC). Herein, we demonstrate that a combination of nanoparticles of poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4 sodium salt (CA4-NPs) plus sorafenib is a promising synergistic approach for systemic treatment of HCC. The CA4-NPs leads to the disruption of established tumor blood vessels and extensive tumor necrosis, however, inducing increased expression of VEGF-A and angiogenesis. Sorafenib reduces the VEGF-A induced angiogenesis and further inhibits tumor proliferation, cooperating with the CA4-NPs.