Heterogeneous modular deep neural network for diabetic retinopathy detection

Soniya, Sandeep Paul, Lotika Singh
{"title":"Heterogeneous modular deep neural network for diabetic retinopathy detection","authors":"Soniya, Sandeep Paul, Lotika Singh","doi":"10.1109/R10-HTC.2016.7906821","DOIUrl":null,"url":null,"abstract":"This paper proposes heterogeneous modular deep neural network (DNN) to address a complex problem of detection of diabetic retinopathy and simultaneously the five types of abnormalities. The modular approach gives the advantage to extract class specific features for the classifier, which helps to outperform the classical convolutional neural networks. Moreover, the heterogeneous nature of modular DNN provides the economy in the overall architecture and also enables to extract region specific features which further contribute to higher accuracy of detection. Extensive simulation studies were performed using benchmark dataset DIARETDB0 and results show that the proposed approach performs better or equivalently good than the other standard approaches.","PeriodicalId":174678,"journal":{"name":"2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC.2016.7906821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes heterogeneous modular deep neural network (DNN) to address a complex problem of detection of diabetic retinopathy and simultaneously the five types of abnormalities. The modular approach gives the advantage to extract class specific features for the classifier, which helps to outperform the classical convolutional neural networks. Moreover, the heterogeneous nature of modular DNN provides the economy in the overall architecture and also enables to extract region specific features which further contribute to higher accuracy of detection. Extensive simulation studies were performed using benchmark dataset DIARETDB0 and results show that the proposed approach performs better or equivalently good than the other standard approaches.
异构模块化深度神经网络用于糖尿病视网膜病变检测
本文提出了异构模块化深度神经网络(DNN)来解决糖尿病视网膜病变和五种异常类型检测的复杂问题。模块化方法的优点是可以为分类器提取特定类别的特征,这有助于优于经典卷积神经网络。此外,模块化深度神经网络的异构特性提供了整体架构的经济性,并且还能够提取特定区域的特征,从而进一步提高检测的准确性。使用基准数据集DIARETDB0进行了广泛的模拟研究,结果表明所提出的方法比其他标准方法性能更好或同等好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信