Analysing uncertain data in decision support systems

K. Schill
{"title":"Analysing uncertain data in decision support systems","authors":"K. Schill","doi":"10.1109/ISUMA.1995.527735","DOIUrl":null,"url":null,"abstract":"Decision support systems use two basic strategies: the pursuit of a small set of hypotheses and the sequential partitioning of hierarchical hypothesis structures. We present an alternative method based on the maximization of information gain. In each step, we evaluate the difference between the actual and potential future evidence distributions. The data \"promising\" the maximum information gain are then inquired by the system. In simple situations, the new method behaves like traditional strategies but in divergent and inconsistent evidence situations, it avoids the drawbacks induced by the predetermined standard strategies by adapting itself continuously to the actual data configuration. Our method can be extended to layered hierarchical data structures, where its behavior is reminiscent of the cognitive phenomenon of \"restructuring\".","PeriodicalId":298915,"journal":{"name":"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISUMA.1995.527735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Decision support systems use two basic strategies: the pursuit of a small set of hypotheses and the sequential partitioning of hierarchical hypothesis structures. We present an alternative method based on the maximization of information gain. In each step, we evaluate the difference between the actual and potential future evidence distributions. The data "promising" the maximum information gain are then inquired by the system. In simple situations, the new method behaves like traditional strategies but in divergent and inconsistent evidence situations, it avoids the drawbacks induced by the predetermined standard strategies by adapting itself continuously to the actual data configuration. Our method can be extended to layered hierarchical data structures, where its behavior is reminiscent of the cognitive phenomenon of "restructuring".
决策支持系统中的不确定数据分析
决策支持系统使用两种基本策略:追求一小组假设和分层假设结构的顺序划分。我们提出了一种基于信息增益最大化的替代方法。在每个步骤中,我们评估实际和潜在的未来证据分布之间的差异。然后,系统查询“有希望”获得最大信息的数据。在简单情况下,新方法的行为与传统策略相同,但在证据分歧和不一致的情况下,它通过不断适应实际数据配置,避免了预定标准策略所带来的缺点。我们的方法可以扩展到分层分层的数据结构,其行为让人想起“重构”的认知现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信