Multi-Task CNN for Classification of Chinese Legal Questions

Guangyi Xiao, Jiqian Mo, Even Chow, Hao Chen, J. Guo, Zhiguo Gong
{"title":"Multi-Task CNN for Classification of Chinese Legal Questions","authors":"Guangyi Xiao, Jiqian Mo, Even Chow, Hao Chen, J. Guo, Zhiguo Gong","doi":"10.1109/ICEBE.2017.22","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-task learning algorithm to classify the Chinese legal questions using deep convolutional neural networks (CNN). First, we propose a multi-task Convolutional Neural Network (CNN) for classification of Chinese legal questions with trainable word embedding where coarse grained classification is the main task and fine grained classification is the side task. Second, we develop a hierarchical classification model which takes the output of coarse classification as one part of the input for fine grained classification. We find that the side task can improve the accuracy and efficiency of the classification in a certain extent. Our experiments on the entire Chinese Legal Questions Dataset (LQDS) demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using almost all data in LQDS for classification and we achieve the state of the art performance.","PeriodicalId":347774,"journal":{"name":"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEBE.2017.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a multi-task learning algorithm to classify the Chinese legal questions using deep convolutional neural networks (CNN). First, we propose a multi-task Convolutional Neural Network (CNN) for classification of Chinese legal questions with trainable word embedding where coarse grained classification is the main task and fine grained classification is the side task. Second, we develop a hierarchical classification model which takes the output of coarse classification as one part of the input for fine grained classification. We find that the side task can improve the accuracy and efficiency of the classification in a certain extent. Our experiments on the entire Chinese Legal Questions Dataset (LQDS) demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using almost all data in LQDS for classification and we achieve the state of the art performance.
用于中文法律问题分类的多任务 CNN
本文提出了一种利用深度卷积神经网络(CNN)对中文法律问题进行分类的多任务学习算法。首先,我们提出了一种多任务卷积神经网络(CNN),用于对中文法律问题进行可训练的词嵌入分类,其中粗粒度分类是主要任务,细粒度分类是次要任务。其次,我们开发了一个分层分类模型,将粗粒度分类的输出作为细粒度分类输入的一部分。我们发现,副任务可以在一定程度上提高分类的准确性和效率。我们在整个中文法律问题数据集(LQDS)上的实验证明了所提方法的有效性。据我们所知,这是第一项使用 LQDS 中几乎所有数据进行分类的工作,而且我们取得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信