A Hybrid Power Generation Platform Combining Floating Wind Turbine and Oscillating Water Column Wave Energy Converters

Zheng Chen, Zeng Weijian, Ming Tan, Dahai Zhang, Yulin Si
{"title":"A Hybrid Power Generation Platform Combining Floating Wind Turbine and Oscillating Water Column Wave Energy Converters","authors":"Zheng Chen, Zeng Weijian, Ming Tan, Dahai Zhang, Yulin Si","doi":"10.1115/omae2019-95968","DOIUrl":null,"url":null,"abstract":"\n Recent years have seen rapid development in offshore wind technology. Particularly, floating offshore wind turbines possess great potential in deep water coastal places around the world, though they are now still in the demonstration phase. At the same time, the unused wave energy is also abundant at the sites of offshore wind farms, especially those in deep sea regions. Collecting wave energy in offshore wind farms might benefit both total energy production and reduce maintenance cost. Therefore, integrating offshore wind turbine with wave energy conversion devices could be a good idea to achieve higher efficiency and lower cost.\n In this paper, we report a combined wind and wave energy power generation concept called WindOWC, which constits of a 5MW wind turbine and three oscillating-water-column (OWC) wave energy converters (WECs). The wind turbine is mounted on a semi-submersible floating platform, which is similar to OC4-semibsubmersible, and the OWCs are located in its three offset columns. In this design, the wind turbine and WECs share the same supporting platform and the power transmission system, thus is expected to reduce the cost of energy. Also, it is possible the OWCs may improve the platform dynamic performance by providing positive damping through controlling the air turbine rotational speed. In this work, we describe the geometry properties of the proposed WindOWC concept and conduct preliminary hydrodynamic analysis using potential flow theory. The ANSYS AQWA is used to obtain the system dynamic responses in frequency and time domain, respectively. The OWC dynamics and expected positive damping from them will be investigated in the future.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent years have seen rapid development in offshore wind technology. Particularly, floating offshore wind turbines possess great potential in deep water coastal places around the world, though they are now still in the demonstration phase. At the same time, the unused wave energy is also abundant at the sites of offshore wind farms, especially those in deep sea regions. Collecting wave energy in offshore wind farms might benefit both total energy production and reduce maintenance cost. Therefore, integrating offshore wind turbine with wave energy conversion devices could be a good idea to achieve higher efficiency and lower cost. In this paper, we report a combined wind and wave energy power generation concept called WindOWC, which constits of a 5MW wind turbine and three oscillating-water-column (OWC) wave energy converters (WECs). The wind turbine is mounted on a semi-submersible floating platform, which is similar to OC4-semibsubmersible, and the OWCs are located in its three offset columns. In this design, the wind turbine and WECs share the same supporting platform and the power transmission system, thus is expected to reduce the cost of energy. Also, it is possible the OWCs may improve the platform dynamic performance by providing positive damping through controlling the air turbine rotational speed. In this work, we describe the geometry properties of the proposed WindOWC concept and conduct preliminary hydrodynamic analysis using potential flow theory. The ANSYS AQWA is used to obtain the system dynamic responses in frequency and time domain, respectively. The OWC dynamics and expected positive damping from them will be investigated in the future.
浮式风力机与振荡水柱波浪能转换器的混合发电平台
近年来,海上风电技术发展迅速。特别是,漂浮式海上风力涡轮机在世界各地的深水沿海地区具有巨大的潜力,尽管它们现在仍处于示范阶段。同时,在海上风电场,特别是深海地区的风电场,未使用的波浪能也很丰富。在海上风力发电场收集波浪能可能有利于总能源生产和降低维护成本。因此,将海上风力发电机与波浪能转换装置集成在一起可能是一个实现更高效率和更低成本的好主意。在本文中,我们报告了一个名为windowwc的风能和波浪能联合发电概念,它由一个5MW的风力涡轮机和三个振荡水柱(OWC)波浪能转换器(WECs)组成。风力机安装在半潜式浮动平台上,该平台类似于oc4 -半潜式平台,OWCs位于其三个偏移柱中。在本设计中,风力发电机组和WECs共用一个支撑平台和动力传输系统,从而有望降低能源成本。此外,OWCs可能通过控制空气涡轮转速提供正阻尼来改善平台的动态性能。在这项工作中,我们描述了提出的windowwc概念的几何特性,并使用势流理论进行了初步的水动力分析。利用ANSYS AQWA软件分别获得了系统的频域和时域动态响应。OWC动力学和期望的正阻尼将在未来进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信