AutoForecast: Automatic Time-Series Forecasting Model Selection

Mustafa Abdallah, Ryan A. Rossi, K. Mahadik, Sungchul Kim, Handong Zhao, S. Bagchi
{"title":"AutoForecast: Automatic Time-Series Forecasting Model Selection","authors":"Mustafa Abdallah, Ryan A. Rossi, K. Mahadik, Sungchul Kim, Handong Zhao, S. Bagchi","doi":"10.1145/3511808.3557241","DOIUrl":null,"url":null,"abstract":"In this work, we develop techniques for fast automatic selection of the best forecasting model for a new unseen time-series dataset, without having to first train (or evaluate) all the models on the new time-series data to select the best one. In particular, we develop a forecasting meta-learning approach called AutoForecast that allows for the quick inference of the best time-series forecasting model for an unseen dataset. Our approach learns both forecasting models performances over time horizon of same dataset and task similarity across different datasets. The experiments demonstrate the effectiveness of the approach over state-of-the-art (SOTA) single and ensemble methods and several SOTA meta-learners (adapted to our problem) in terms of selecting better forecasting models (i.e., 2X gain) for unseen tasks for univariate and multivariate testbeds.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we develop techniques for fast automatic selection of the best forecasting model for a new unseen time-series dataset, without having to first train (or evaluate) all the models on the new time-series data to select the best one. In particular, we develop a forecasting meta-learning approach called AutoForecast that allows for the quick inference of the best time-series forecasting model for an unseen dataset. Our approach learns both forecasting models performances over time horizon of same dataset and task similarity across different datasets. The experiments demonstrate the effectiveness of the approach over state-of-the-art (SOTA) single and ensemble methods and several SOTA meta-learners (adapted to our problem) in terms of selecting better forecasting models (i.e., 2X gain) for unseen tasks for univariate and multivariate testbeds.
自动预测:自动时间序列预测模型选择
在这项工作中,我们开发了一种技术,用于快速自动选择新的未知时间序列数据集的最佳预测模型,而无需首先在新的时间序列数据上训练(或评估)所有模型以选择最佳模型。特别是,我们开发了一种称为AutoForecast的预测元学习方法,可以快速推断出未知数据集的最佳时间序列预测模型。我们的方法学习了同一数据集的预测模型在时间范围内的性能和不同数据集的任务相似性。实验证明了该方法在为单变量和多变量测试平台的未见任务选择更好的预测模型(即2X增益)方面优于最先进的(SOTA)单一和集成方法以及几个SOTA元学习器(适应我们的问题)的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信