Evaluating Binary Encoding Techniques for WiSARD

Andressa Kappaun, Karine Camargo, Fábio Medeiros Rangel, Fabrício Firmino de Faria, P. Lima, Jonice Oliveira
{"title":"Evaluating Binary Encoding Techniques for WiSARD","authors":"Andressa Kappaun, Karine Camargo, Fábio Medeiros Rangel, Fabrício Firmino de Faria, P. Lima, Jonice Oliveira","doi":"10.1109/BRACIS.2016.029","DOIUrl":null,"url":null,"abstract":"Many weightless neural networks, such as WiSARD, are RAM-based classifiers that receive binary data as input. In order to convert raw data into binary input, several techniques are applicable. This work evaluates the impact of some of these binarization techniques on the accuracy of two types of classifiers: WiSARD model and WiSARD with bleaching mechanism. The binary encoding techniques explored were: (i) thermometer, (ii) threshold, (iii) local threshold, (iv) Marr-Hildreth filter, and (v) Laplacian filter. The MNIST digit dataset was used to compare the accuracy obtained by each encoding technique. Results showed a difference of more than 20% in the accuracy due to the choice of encoding approach.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Many weightless neural networks, such as WiSARD, are RAM-based classifiers that receive binary data as input. In order to convert raw data into binary input, several techniques are applicable. This work evaluates the impact of some of these binarization techniques on the accuracy of two types of classifiers: WiSARD model and WiSARD with bleaching mechanism. The binary encoding techniques explored were: (i) thermometer, (ii) threshold, (iii) local threshold, (iv) Marr-Hildreth filter, and (v) Laplacian filter. The MNIST digit dataset was used to compare the accuracy obtained by each encoding technique. Results showed a difference of more than 20% in the accuracy due to the choice of encoding approach.
评估WiSARD的二进制编码技术
许多无权重神经网络,如WiSARD,是基于ram的分类器,接收二进制数据作为输入。为了将原始数据转换为二进制输入,可以使用几种技术。本工作评估了这些二值化技术对两种分类器的准确性的影响:WiSARD模型和带有漂白机制的WiSARD。探索的二进制编码技术有:(i)温度计,(ii)阈值,(iii)局部阈值,(iv)马尔-希尔德雷斯滤波器,(v)拉普拉斯滤波器。使用MNIST数字数据集比较每种编码技术获得的精度。结果表明,由于编码方法的选择,准确率差异超过20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信