Circuit World: A Multiplayer VE for Researching Engineering Learning

Joseph Rozell, J. Stonewall, Samual Vacura, Haylee Lawrence, Jarrett Loseke, Matthew Greiner, Nicholas Wilson, Riley Hogan, Madissen Lawrence, Emily Oldham, Stephen B Gilbert, Benjamin Purdy, Hannah Wellik, Kennedy Cook, A. Jasper, Nick Fetty, Leilani Hammel, Carley Haus, Y. Vardhan, Kaitlyn Ouverson, Rachel E. Dianiska, Colin Johnston, L. Robbins, Elizabeth Belling, Charles J. Peasley, James Oliver, Peggy Wu
{"title":"Circuit World: A Multiplayer VE for Researching Engineering Learning","authors":"Joseph Rozell, J. Stonewall, Samual Vacura, Haylee Lawrence, Jarrett Loseke, Matthew Greiner, Nicholas Wilson, Riley Hogan, Madissen Lawrence, Emily Oldham, Stephen B Gilbert, Benjamin Purdy, Hannah Wellik, Kennedy Cook, A. Jasper, Nick Fetty, Leilani Hammel, Carley Haus, Y. Vardhan, Kaitlyn Ouverson, Rachel E. Dianiska, Colin Johnston, L. Robbins, Elizabeth Belling, Charles J. Peasley, James Oliver, Peggy Wu","doi":"10.1109/VRW52623.2021.00272","DOIUrl":null,"url":null,"abstract":"Business travel leads to the consumption of large amounts of energy. Circuit World (CW), a Unity virtual environment, uses avatars and realistic simulations of electrical circuits to test the effectiveness of teaching complex engineering tasks without travel. To evaluate CW, a study compares how well participants learn to repair a circuit when trained face-to-face, via Zoom, and within CW wearing an HMD. After training and completion of a knowledge quiz, learners are given a circuit to repair by themselves using a non-immersive desktop version of CW. Participants repair it again two weeks later to test retention. Each study session involves three people: learner, trainer, and researcher. The learner and trainer control avatars and the researcher, invisible, observes over the learner’s shoulder. Collected data includes task performance logs from CW, knowledge quiz scores, and, based on video recordings, eye gaze tracking, behavioral coding, and measures of facial synchrony between trainer and learner.","PeriodicalId":256204,"journal":{"name":"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRW52623.2021.00272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Business travel leads to the consumption of large amounts of energy. Circuit World (CW), a Unity virtual environment, uses avatars and realistic simulations of electrical circuits to test the effectiveness of teaching complex engineering tasks without travel. To evaluate CW, a study compares how well participants learn to repair a circuit when trained face-to-face, via Zoom, and within CW wearing an HMD. After training and completion of a knowledge quiz, learners are given a circuit to repair by themselves using a non-immersive desktop version of CW. Participants repair it again two weeks later to test retention. Each study session involves three people: learner, trainer, and researcher. The learner and trainer control avatars and the researcher, invisible, observes over the learner’s shoulder. Collected data includes task performance logs from CW, knowledge quiz scores, and, based on video recordings, eye gaze tracking, behavioral coding, and measures of facial synchrony between trainer and learner.
电路世界:研究工程学习的多人VE
商务旅行会消耗大量的能源。电路世界(CW)是一个Unity虚拟环境,使用虚拟人物和真实的电路模拟来测试在不旅行的情况下教授复杂工程任务的有效性。为了评估连续训练,一项研究比较了参与者在面对面、通过Zoom和戴着HMD的连续训练中学习修复电路的情况。在培训和完成知识测试后,学习者将使用非沉浸式桌面版CW自行修复电路。两周后,参与者再次进行修复,以测试记忆力。每次学习有三个人参与:学习者、培训师和研究人员。学习者和训练者控制虚拟人物,而看不见的研究人员则站在学习者的肩膀上观察。收集的数据包括来自CW的任务表现日志、知识测验分数,以及基于视频记录的眼睛注视跟踪、行为编码和训练者和学习者之间面部同步的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信