Algebraic cobordism and étale cohomology

E. Elmanto, M. Levine, Markus Spitzweck, P. Ostvaer
{"title":"Algebraic cobordism and étale\ncohomology","authors":"E. Elmanto, M. Levine, Markus Spitzweck, P. Ostvaer","doi":"10.2140/gt.2022.26.477","DOIUrl":null,"url":null,"abstract":"Thomason's \\'{e}tale descent theorem for Bott periodic algebraic $K$-theory \\cite{aktec} is generalized to any $MGL$ module over a regular Noetherian scheme of finite dimension. Over arbitrary Noetherian schemes of finite dimension, this generalizes the analog of Thomason's theorem for Weibel's homotopy $K$-theory. This is achieved by amplifying the effects from the case of motivic cohomology, using the slice spectral sequence in the case of the universal example of algebraic cobordism. We also obtain integral versions of these statements: Bousfield localization at \\'etale motivic cohomology is the universal way to impose \\'etale descent for these theories. As applications, we describe the \\'etale local objects in modules over these spectra and show that they satisfy the full six functor formalism, construct an \\'etale descent spectral sequence converging to Bott-inverted motivic Landweber exact theories, and prove cellularity and effectivity of the \\'{e}tale versions of these motivic spectra.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Thomason's \'{e}tale descent theorem for Bott periodic algebraic $K$-theory \cite{aktec} is generalized to any $MGL$ module over a regular Noetherian scheme of finite dimension. Over arbitrary Noetherian schemes of finite dimension, this generalizes the analog of Thomason's theorem for Weibel's homotopy $K$-theory. This is achieved by amplifying the effects from the case of motivic cohomology, using the slice spectral sequence in the case of the universal example of algebraic cobordism. We also obtain integral versions of these statements: Bousfield localization at \'etale motivic cohomology is the universal way to impose \'etale descent for these theories. As applications, we describe the \'etale local objects in modules over these spectra and show that they satisfy the full six functor formalism, construct an \'etale descent spectral sequence converging to Bott-inverted motivic Landweber exact theories, and prove cellularity and effectivity of the \'{e}tale versions of these motivic spectra.
代数余数与同调
将Thomason的Bott周期代数$K$ -理论\cite{aktec}的 下降定理推广到有限维正则Noetherian格式上的任意$MGL$模。在有限维的任意noether格式上,推广了对Weibel同伦$K$ -理论的Thomason定理的类比。这是通过放大从动机上同调的情况下的影响,使用在代数共调的普遍例子的情况下的切片谱序列。我们也得到了这些陈述的积分版本:在这些理论中,在动机上同上的Bousfield定位是强加于这些理论的下降的普遍方法。作为应用,我们在这些谱上描述了模块中的可变局部目标,证明了它们满足满六函子形式,构造了一个收敛于bot_inverted动机Landweber精确理论的可变下降谱序列,并证明了这些动机谱的胞性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信