Location-based correlation estimation in social network via Collaborative Learning

Xiaoyu Zhang, Kai Zhang, Xiao-chun Yun, Shupeng Wang, Xiuguo Bao, Qingsheng Yuan
{"title":"Location-based correlation estimation in social network via Collaborative Learning","authors":"Xiaoyu Zhang, Kai Zhang, Xiao-chun Yun, Shupeng Wang, Xiuguo Bao, Qingsheng Yuan","doi":"10.1109/INFCOMW.2016.7562259","DOIUrl":null,"url":null,"abstract":"In social network analysis, correlation estimation is a critical part for various applications. With the prevalence of location-based services, geographic information is incorporated as a new perspective to refer the interpersonal correlation. In this paper, we propose a novel multi-scale multi-feature collaborative learning model for robust location-based correlation estimation. Geographic attributes are explored from multiple scales, and in the meantime, depicted by multiple features. Using the observed interactions as labeled data and the unobserved ones with high predictive confidence as recommended unlabeled data, the global correlation can be estimated in a collaborative way.","PeriodicalId":348177,"journal":{"name":"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2016.7562259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In social network analysis, correlation estimation is a critical part for various applications. With the prevalence of location-based services, geographic information is incorporated as a new perspective to refer the interpersonal correlation. In this paper, we propose a novel multi-scale multi-feature collaborative learning model for robust location-based correlation estimation. Geographic attributes are explored from multiple scales, and in the meantime, depicted by multiple features. Using the observed interactions as labeled data and the unobserved ones with high predictive confidence as recommended unlabeled data, the global correlation can be estimated in a collaborative way.
基于协同学习的社交网络位置相关性估计
在社会网络分析中,相关估计是各种应用的关键环节。随着基于位置的服务的普及,地理信息作为一种新的视角被纳入人际关系研究。本文提出了一种新的多尺度多特征协同学习模型,用于鲁棒位置相关估计。从多个尺度探索地理属性,同时用多个特征来描述地理属性。将观察到的相互作用作为标记数据,将预测置信度较高的未观察到的相互作用作为推荐的未标记数据,以协作的方式估计全局相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信