Optimal PID parametric auto-adjustment for BLDC motor control systems based on artificial intelligence

Jirapun Pongfai, W. Assawinchaichote
{"title":"Optimal PID parametric auto-adjustment for BLDC motor control systems based on artificial intelligence","authors":"Jirapun Pongfai, W. Assawinchaichote","doi":"10.1109/IEECON.2017.8075892","DOIUrl":null,"url":null,"abstract":"This paper considers the comparison performance and effectiveness of the PID controller auto-tuning for brushless DC motor (BLDC motor) by applying artificial intelligence (AI) algorithm and the classical method of PID parameters tuning. Neural network algorithm (NN) and genetic algorithm (GA) are among the well-known artificial intelligences algorithm existing todays while the classical method is Ziglor-Nichol method (ZN). To compare the performances of the controller, the convergence rate and the transient response analysis is examined by considering a criterial evaluated performance of the overshoot, the steady state error and the rise time. From the BLDC motor simulation results, it is found that the NN has given the better transient response than the GA and the ZN when evaluated in the convergence rate and the transient response analysis.","PeriodicalId":196081,"journal":{"name":"2017 International Electrical Engineering Congress (iEECON)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electrical Engineering Congress (iEECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEECON.2017.8075892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper considers the comparison performance and effectiveness of the PID controller auto-tuning for brushless DC motor (BLDC motor) by applying artificial intelligence (AI) algorithm and the classical method of PID parameters tuning. Neural network algorithm (NN) and genetic algorithm (GA) are among the well-known artificial intelligences algorithm existing todays while the classical method is Ziglor-Nichol method (ZN). To compare the performances of the controller, the convergence rate and the transient response analysis is examined by considering a criterial evaluated performance of the overshoot, the steady state error and the rise time. From the BLDC motor simulation results, it is found that the NN has given the better transient response than the GA and the ZN when evaluated in the convergence rate and the transient response analysis.
基于人工智能的无刷直流电机控制系统最优PID参数自整定
本文研究了应用人工智能算法与经典PID参数整定方法对无刷直流电动机(BLDC motor)进行PID控制器自整定的性能和有效性比较。神经网络算法(Neural network algorithm, NN)和遗传算法(genetic algorithm, GA)是目前较为知名的人工智能算法,其中经典的方法是Ziglor-Nichol方法(Ziglor-Nichol method, ZN)。为了比较控制器的性能,通过考虑超调量、稳态误差和上升时间的判据来检验控制器的收敛速度和暂态响应分析。从无刷直流电机的仿真结果来看,在收敛速度和暂态响应分析方面,神经网络比遗传算法和遗传算法具有更好的暂态响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信