Non-Equilibrium Learning and Cyber-Physical Security

K. Vamvoudakis, Aris Kanellopoulos
{"title":"Non-Equilibrium Learning and Cyber-Physical Security","authors":"K. Vamvoudakis, Aris Kanellopoulos","doi":"10.1109/ALLERTON.2019.8919756","DOIUrl":null,"url":null,"abstract":"This paper introduces a framework for non-equilibrium behavior analysis in cyber-physical systems for security purposes. To categorize the player, we employ the principles of reinforcement learning in order to derive an iterative method of optimal responses that determine the policy of an agent with level-$k$ intelligence in a general non-zerosum, nonlinear environment. For the special case of zero-sum, linear quadratic games we derive appropriate non-equilibrium game Riccati equations. To obviate the need for complete knowledge of the system dynamics, we employ a Q-learning algorithm as a best response solver. We then design an estimator that determines the distribution of intelligence levels in the adversarial environment of the system. Finally, simulation results showcase the efficacy of our approach.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a framework for non-equilibrium behavior analysis in cyber-physical systems for security purposes. To categorize the player, we employ the principles of reinforcement learning in order to derive an iterative method of optimal responses that determine the policy of an agent with level-$k$ intelligence in a general non-zerosum, nonlinear environment. For the special case of zero-sum, linear quadratic games we derive appropriate non-equilibrium game Riccati equations. To obviate the need for complete knowledge of the system dynamics, we employ a Q-learning algorithm as a best response solver. We then design an estimator that determines the distribution of intelligence levels in the adversarial environment of the system. Finally, simulation results showcase the efficacy of our approach.
非平衡学习与网络物理安全
本文介绍了一种基于安全目的的网络物理系统非平衡行为分析框架。为了对玩家进行分类,我们采用了强化学习的原则,以推导出一种迭代的最优响应方法,该方法可以在一般的非零和非线性环境中确定具有k级智能的代理的策略。对于零和、线性二次对策的特殊情况,导出了适当的非均衡对策Riccati方程。为了避免对系统动力学完整知识的需要,我们采用q -学习算法作为最佳响应求解器。然后,我们设计了一个估计器来确定系统对抗环境中智能水平的分布。最后,仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信