A neural computational scheme for extracting optical flow from the Gabor phase differences of successive images

Tien-Ren Tsao, V. C. Chen
{"title":"A neural computational scheme for extracting optical flow from the Gabor phase differences of successive images","authors":"Tien-Ren Tsao, V. C. Chen","doi":"10.1109/IJCNN.1992.227303","DOIUrl":null,"url":null,"abstract":"The authors propose a neurobiologically plausible representation of the Gabor phase information, and present a neural computation scheme for extracting visual motion information from the Gabor phase information. The scheme can compute visual motion accurately from a scene with illumination changes, while other neural schemes for optical flow must assume stable brightness. The computational tests on synthetic and natural image data showed that the scheme was robust to the natural scenes. An architecture is presented of a neural network system based on the Gabor phase representation of visual motion.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The authors propose a neurobiologically plausible representation of the Gabor phase information, and present a neural computation scheme for extracting visual motion information from the Gabor phase information. The scheme can compute visual motion accurately from a scene with illumination changes, while other neural schemes for optical flow must assume stable brightness. The computational tests on synthetic and natural image data showed that the scheme was robust to the natural scenes. An architecture is presented of a neural network system based on the Gabor phase representation of visual motion.<>
一种从连续图像Gabor相位差中提取光流的神经网络计算方法
作者提出了一种神经生物学上合理的Gabor相位信息表示,并提出了一种从Gabor相位信息中提取视觉运动信息的神经计算方案。该方案能够准确地从光照变化的场景中计算视觉运动,而其他的光流神经算法必须假设亮度稳定。对合成图像和自然图像数据的计算测试表明,该方案对自然场景具有较强的鲁棒性。提出了一种基于视觉运动Gabor相位表示的神经网络系统结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信