A Fully-Convolutional Framework for Semantic Segmentation

Yalong Jiang, Z. Chi
{"title":"A Fully-Convolutional Framework for Semantic Segmentation","authors":"Yalong Jiang, Z. Chi","doi":"10.1109/DICTA.2017.8227388","DOIUrl":null,"url":null,"abstract":"In this paper we propose a deep learning technique to improve the performance of semantic segmentation tasks. Previously proposed algorithms generally suffer from the over-dependence on a single modality as well as a lack of training data. We made three contributions to improve the performance. Firstly, we adopt two models which are complementary in our framework to enrich field-of-views and features to make segmentation more reliable. Secondly, we repurpose the datasets form other tasks to the segmentation task by training the two models in our framework on different datasets. This brings the benefits of data augmentation while saving the cost of image annotation. Thirdly, the number of parameters in our framework is minimized to reduce the complexity of the framework and to avoid over- fitting. Experimental results show that our framework significantly outperforms the current state-of-the-art methods with a smaller number of parameters and better generalization ability.","PeriodicalId":194175,"journal":{"name":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"40 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2017.8227388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we propose a deep learning technique to improve the performance of semantic segmentation tasks. Previously proposed algorithms generally suffer from the over-dependence on a single modality as well as a lack of training data. We made three contributions to improve the performance. Firstly, we adopt two models which are complementary in our framework to enrich field-of-views and features to make segmentation more reliable. Secondly, we repurpose the datasets form other tasks to the segmentation task by training the two models in our framework on different datasets. This brings the benefits of data augmentation while saving the cost of image annotation. Thirdly, the number of parameters in our framework is minimized to reduce the complexity of the framework and to avoid over- fitting. Experimental results show that our framework significantly outperforms the current state-of-the-art methods with a smaller number of parameters and better generalization ability.
语义分割的全卷积框架
在本文中,我们提出了一种深度学习技术来提高语义分割任务的性能。以往提出的算法普遍存在过度依赖单一模态和缺乏训练数据的问题。为了提高业绩,我们做了三点贡献。首先,我们在框架中采用了互补的两种模型,丰富了视野和特征,使分割更加可靠;其次,我们通过在不同的数据集上训练框架中的两个模型,将来自其他任务的数据集重新用于分割任务。这带来了数据增强的好处,同时节省了图像注释的成本。第三,我们的框架中参数的数量是最小化的,以减少框架的复杂性和避免过拟合。实验结果表明,我们的框架以更少的参数和更好的泛化能力明显优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信