Higher order geometrical image features representation for action recognition

N. N. A. Sjarif, S. Z. M. Hashim, S. Shamsuddin, A. Ralescu
{"title":"Higher order geometrical image features representation for action recognition","authors":"N. N. A. Sjarif, S. Z. M. Hashim, S. Shamsuddin, A. Ralescu","doi":"10.1109/SOCPAR.2013.7054140","DOIUrl":null,"url":null,"abstract":"Higher order image features based on Hu moment invariants have been used successfully in a variety of image analysis tasks. This study presents the application of an invariant to unequal rescaling of the image in constructing image features suitable for action recognition. These features are computed for video images and can be used for classification. Experimental results suggest that this approach is effective and more accurate when compared with traditional geometric invariants.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Higher order image features based on Hu moment invariants have been used successfully in a variety of image analysis tasks. This study presents the application of an invariant to unequal rescaling of the image in constructing image features suitable for action recognition. These features are computed for video images and can be used for classification. Experimental results suggest that this approach is effective and more accurate when compared with traditional geometric invariants.
用于动作识别的高阶几何图像特征表示
基于Hu矩不变量的高阶图像特征已经成功地应用于各种图像分析任务中。本研究提出了一种不变量对图像的不等缩放的应用,用于构造适合动作识别的图像特征。这些特征是为视频图像计算的,可以用于分类。实验结果表明,与传统的几何不变量相比,该方法是有效的,而且精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信