HLA: Harmonized Label Assigner for Two-stage Oriented Object Detection

Qimeng Chen, Tong Zheng, Liu Liu, Longji Yu, Zhong Chen
{"title":"HLA: Harmonized Label Assigner for Two-stage Oriented Object Detection","authors":"Qimeng Chen, Tong Zheng, Liu Liu, Longji Yu, Zhong Chen","doi":"10.1109/ICARCE55724.2022.10046644","DOIUrl":null,"url":null,"abstract":"The existing state-of-the-arts two-stage oriented object detectors have no significant improvement in the label assignment strategies, and the most widely-used one is the so-called Max IoU Assigner (MIA). In this paper, we first illustrate that MIA may cause matching conflicts in some cases, hinder the matching of ground-truth (GT) boxes with high-quality samples, which is extremely harmful to the training process. After that, we propose a Harmonized Label Assigner (HLA) for the oriented RPN, which can automatically harmonize the assignment priority of each GT box according to the corresponding number of candidate samples, solve the matching conflicts, and improve the detection accuracy of the two-stage oriented detectors. Finally, we implement the proposed HLA on Oriented R-CNN and conduct sufficient experiments on two public datasets (MAR20 and HRSC2016). Without tricks, our HLA significantly improves the detection accuracy of the detector to 83.97% mAP (on MAR20) and 90.42% mAP (on HRSC2016), respectively.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existing state-of-the-arts two-stage oriented object detectors have no significant improvement in the label assignment strategies, and the most widely-used one is the so-called Max IoU Assigner (MIA). In this paper, we first illustrate that MIA may cause matching conflicts in some cases, hinder the matching of ground-truth (GT) boxes with high-quality samples, which is extremely harmful to the training process. After that, we propose a Harmonized Label Assigner (HLA) for the oriented RPN, which can automatically harmonize the assignment priority of each GT box according to the corresponding number of candidate samples, solve the matching conflicts, and improve the detection accuracy of the two-stage oriented detectors. Finally, we implement the proposed HLA on Oriented R-CNN and conduct sufficient experiments on two public datasets (MAR20 and HRSC2016). Without tricks, our HLA significantly improves the detection accuracy of the detector to 83.97% mAP (on MAR20) and 90.42% mAP (on HRSC2016), respectively.
面向两阶段目标检测的协调标签分配器
现有的两级定向目标检测器在标签分配策略上没有明显的改进,其中使用最广泛的是所谓的最大标签分配器(MIA)。在本文中,我们首先说明MIA在某些情况下可能会导致匹配冲突,阻碍ground-truth (GT) boxes与高质量样本的匹配,这对训练过程是极其有害的。在此基础上,提出了一种面向RPN的协调标签分配器(Harmonized Label Assigner, HLA),该方法可以根据对应的候选样本数量自动协调每个GT盒的分配优先级,解决匹配冲突,提高两级面向检测器的检测精度。最后,我们在Oriented R-CNN上实现了所提出的HLA,并在两个公共数据集(MAR20和HRSC2016)上进行了充分的实验。在没有任何技巧的情况下,我们的HLA显著提高了检测器的检测准确率,分别达到83.97% mAP(在MAR20上)和90.42% mAP(在HRSC2016上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信