An ensemble approach for cancerious dataset analysis using feature selection

Payal Dhakate, K. Rajeswari, Deepa Abin
{"title":"An ensemble approach for cancerious dataset analysis using feature selection","authors":"Payal Dhakate, K. Rajeswari, Deepa Abin","doi":"10.1109/GCCT.2015.7342708","DOIUrl":null,"url":null,"abstract":"Feature selection (FS) is an important technique in data mining to remove noise, irrelevant and redundant data. The paper introduces the ensemble approach using FS and without using FS tested on a standard medical dataset in order to compare the accuracy and time of both. This system uses best first search FS algorithm to reduce the noise in the dataset. The ensemble technique is a combination of two or more classifiers i.e. meta classifiers and classifiers. Bagging, Boosting and Adaboost are meta classifiers. In the proposed work Bagging and Adaboost ensembles are used, but the main focus is on Bagging Ensembles as it has been proven best compared to Adaboost and Boosting ensembles [1]. This paper concludes that better results can be achieved by applying FS on ensembles.","PeriodicalId":378174,"journal":{"name":"2015 Global Conference on Communication Technologies (GCCT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Global Conference on Communication Technologies (GCCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCT.2015.7342708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Feature selection (FS) is an important technique in data mining to remove noise, irrelevant and redundant data. The paper introduces the ensemble approach using FS and without using FS tested on a standard medical dataset in order to compare the accuracy and time of both. This system uses best first search FS algorithm to reduce the noise in the dataset. The ensemble technique is a combination of two or more classifiers i.e. meta classifiers and classifiers. Bagging, Boosting and Adaboost are meta classifiers. In the proposed work Bagging and Adaboost ensembles are used, but the main focus is on Bagging Ensembles as it has been proven best compared to Adaboost and Boosting ensembles [1]. This paper concludes that better results can be achieved by applying FS on ensembles.
基于特征选择的癌症数据集集成分析方法
特征选择(FS)是数据挖掘中去除噪声、不相关和冗余数据的重要技术。本文介绍了在标准医学数据集上使用FS和不使用FS的集成方法,以比较两者的准确性和时间。该系统采用最优优先搜索FS算法来降低数据集中的噪声。集成技术是两个或多个分类器的组合,即元分类器和分类器。Bagging, Boosting和Adaboost是元分类器。在提议的工作中使用了Bagging和Adaboost集成,但主要关注的是Bagging集成,因为与Adaboost和Boosting集成相比,Bagging集成已被证明是最好的[1]。本文的结论是,将FS应用于系综可以获得较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信