Yinsheng Xu, Fengyuan Ren, Tao He, Chuang Lin, Canfeng Chen, Sajal K. Das
{"title":"Real-time routing in wireless sensor networks: A potential field approach","authors":"Yinsheng Xu, Fengyuan Ren, Tao He, Chuang Lin, Canfeng Chen, Sajal K. Das","doi":"10.1145/2480730.2480738","DOIUrl":null,"url":null,"abstract":"Wireless Sensor Networks (WSNs) are embracing an increasing number of real-time applications subject to strict delay constraints. Utilizing the methodology of potential field in physics, in this article we effectively address the challenges of real-time routing in WSNs. In particular, based on a virtual composite potential field, we propose the Potential-based Real-Time Routing (PRTR) protocol that supports real-time routing using multipath transmission. PRTR minimizes delay for real-time traffic and alleviates possible congestions simultaneously. Since the delay bounds of real-time flows are extremely important, the end-to-end delay bound for a single flow is derived based on the Network Calculus theory. The simulation results show that PRTR minimizes the end-to-end delay for real-time routing, and also guarantees a tight bound on the delay.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2480730.2480738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
Wireless Sensor Networks (WSNs) are embracing an increasing number of real-time applications subject to strict delay constraints. Utilizing the methodology of potential field in physics, in this article we effectively address the challenges of real-time routing in WSNs. In particular, based on a virtual composite potential field, we propose the Potential-based Real-Time Routing (PRTR) protocol that supports real-time routing using multipath transmission. PRTR minimizes delay for real-time traffic and alleviates possible congestions simultaneously. Since the delay bounds of real-time flows are extremely important, the end-to-end delay bound for a single flow is derived based on the Network Calculus theory. The simulation results show that PRTR minimizes the end-to-end delay for real-time routing, and also guarantees a tight bound on the delay.