Numerical Assessment of Hydraulic Properties of Triply Periodic Minimal Surfaces Structures

Cecilia Piatti, L. Savoldi, N. Fathi
{"title":"Numerical Assessment of Hydraulic Properties of Triply Periodic Minimal Surfaces Structures","authors":"Cecilia Piatti, L. Savoldi, N. Fathi","doi":"10.1115/vvuq2023-108794","DOIUrl":null,"url":null,"abstract":"\n The present work is devoted to evaluating the hydraulic properties of Triply Periodic Minimal Surfaces (TPMS) structures, a generation of porous structures developed using the periodicity of trigonometric equations to generate triply periodic minimal surfaces. The thorough computational and experimental analysis coupled with verification assessment is key to using these product structures in thermal hydraulics especially to address industrial requirements. Here the hydraulic properties are computed by performing three-dimensional CFD analyses using Star-CCM+. Gyroid TPMS was hydraulically analyzed with a water flow in three-channel configurations (circular, square, and rectangular section), with the same hydraulic diameter and length, respectively 5.08cm and 10cm. Their porosity values range from 80% to 93% depending on the unit cell dimensions (chosen values were 10mm, 15mm, 20mm, 25mm, and 30mm). The CFD models for the rectangular TPMS contain the maximum epistemic uncertainty of 19% following the ASME VV 20 codes. In preparation for the forthcoming test campaign, the hydraulic characteristic of the different channels is assessed comparatively, and the friction factors are computed and compared to reach a basic understanding of the parametric effect of channel shape and cell size.","PeriodicalId":387733,"journal":{"name":"ASME 2023 Verification, Validation, and Uncertainty Quantification Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2023 Verification, Validation, and Uncertainty Quantification Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/vvuq2023-108794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present work is devoted to evaluating the hydraulic properties of Triply Periodic Minimal Surfaces (TPMS) structures, a generation of porous structures developed using the periodicity of trigonometric equations to generate triply periodic minimal surfaces. The thorough computational and experimental analysis coupled with verification assessment is key to using these product structures in thermal hydraulics especially to address industrial requirements. Here the hydraulic properties are computed by performing three-dimensional CFD analyses using Star-CCM+. Gyroid TPMS was hydraulically analyzed with a water flow in three-channel configurations (circular, square, and rectangular section), with the same hydraulic diameter and length, respectively 5.08cm and 10cm. Their porosity values range from 80% to 93% depending on the unit cell dimensions (chosen values were 10mm, 15mm, 20mm, 25mm, and 30mm). The CFD models for the rectangular TPMS contain the maximum epistemic uncertainty of 19% following the ASME VV 20 codes. In preparation for the forthcoming test campaign, the hydraulic characteristic of the different channels is assessed comparatively, and the friction factors are computed and compared to reach a basic understanding of the parametric effect of channel shape and cell size.
三周期最小表面结构水力性能的数值评估
目前的工作是致力于评估三周期最小表面(TPMS)结构的水力性能,这是利用三角方程的周期性来产生三周期最小表面的一代多孔结构。彻底的计算和实验分析加上验证评估是在热工液压中使用这些产品结构的关键,特别是满足工业要求。在这里,通过使用Star-CCM+进行三维CFD分析来计算水力特性。采用相同水力直径和水力长度分别为5.08cm和10cm的三通道(圆形、方形和矩形截面)水流对陀螺TPMS进行水力分析。它们的孔隙度值从80%到93%不等,这取决于单元格的尺寸(选择的值有10mm、15mm、20mm、25mm和30mm)。根据ASME VV 20规范,矩形TPMS的CFD模型包含19%的最大认知不确定性。为了准备即将到来的试验活动,对不同通道的水力特性进行了比较评估,并对摩擦系数进行了计算和比较,以基本了解通道形状和单元尺寸的参数影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信