Qualitative Behavior of the difference equation ${x_{n+1}}=\frac{{% \alpha {x_{n-m}+\eta {x_{n-k}{+\sigma {x_{n-l}}}}+}}\delta {{x_{n}}}}{{\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$

Mohamed ABD EL-MONEAM
{"title":"Qualitative Behavior of the difference equation ${x_{n+1}}=\\frac{{% \\alpha {x_{n-m}+\\eta {x_{n-k}{+\\sigma {x_{n-l}}}}+}}\\delta {{x_{n}}}}{{\\beta +\\gamma {x_{n-k}}{x_{n-l}}\\left( {{x_{n-k}}+{x_{n-l}}}\\right) }}$","authors":"Mohamed ABD EL-MONEAM","doi":"10.33401/fujma.1239100","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss some qualitative properties of the positive \nsolutions to the following rational nonlinear difference equation ${x_{n+1}}=% \n\\frac{{\\alpha {x_{n-m}+\\eta {x_{n-k}{+\\sigma {x_{n-l}}}}+}}\\delta {{x_{n}}}}{% \n{\\beta +\\gamma {x_{n-k}}{x_{n-l}}\\left( {{x_{n-k}}+{x_{n-l}}}\\right) }}$, $% \nn=0,1,2,...$ where the parameters $\\alpha ,\\beta ,\\gamma ,\\delta ,{\\eta },{% \n\\sigma }\\in (0,\\infty )$, while $m,k,l$ are positive integers, such that $% \nm","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.1239100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we discuss some qualitative properties of the positive solutions to the following rational nonlinear difference equation ${x_{n+1}}=% \frac{{\alpha {x_{n-m}+\eta {x_{n-k}{+\sigma {x_{n-l}}}}+}}\delta {{x_{n}}}}{% {\beta +\gamma {x_{n-k}}{x_{n-l}}\left( {{x_{n-k}}+{x_{n-l}}}\right) }}$, $% n=0,1,2,...$ where the parameters $\alpha ,\beta ,\gamma ,\delta ,{\eta },{% \sigma }\in (0,\infty )$, while $m,k,l$ are positive integers, such that $% m
差分方程的定性行为${间{n + 1}} = \压裂{{α% \{间{n - m} + \埃塔{间{n - k}{+ \σ{间{n-l}}}} +}} \三角洲{{间{n}}}}{{\β+ \γ{间{n - k}}{间{n-l}} \离开({{间{n - k}} +{间{n-l}}} \右)}}$
在本文中,我们讨论一些正解的定性性质如下合理的非线性差分方程${间{n + 1}} = % \压裂{{\α{间{n - m} + \埃塔{间{n - k}{+ \σ{间{n-l}}}} +}} \三角洲{{间{n}}}}{%{\β+ \γ{间{n - k}}{间{n-l}} \离开({{间{n - k}} +{间{n-l}}} \ ) }}$, $% n = 0, 1, 2,…其中参数$\alpha,\beta,\gamma,\delta,{\eta},{% \sigma}\in (0,\infty)$,而$m,k,l$是正整数,使得$% m
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信