A Constant-Factor Approximation for the Generalized Cable-Trench Problem

M. P. Benedito, L. L. Pedrosa, H. K. Rosado
{"title":"A Constant-Factor Approximation for the Generalized Cable-Trench Problem","authors":"M. P. Benedito, L. L. Pedrosa, H. K. Rosado","doi":"10.5753/etc.2019.6399","DOIUrl":null,"url":null,"abstract":"In the Cable-Trench Problem (CTP), the objective is to find a rooted spanning tree of a weighted graph that minimizes the length of the tree, scaled by a non-negative factor , plus the sum of all shortest-path lengths from the root, scaled by another non-negative factor. This is an intermediate optimization problem between the Single-Destination Shortest Path Problem and the Minimum Spanning Tree Problem. In this extended abstract, we consider the Generalized CTP (GCTP), in which some vertices need not be connected to the root, but may serve as cost-saving merging points; this variant also generalizes the Steiner Tree Problem. We present an 8.599-approximation algorithm for GCTP. Before this paper, no constant approximation for the standard CTP was known.","PeriodicalId":315906,"journal":{"name":"Anais do Encontro de Teoria da Computação (ETC)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Encontro de Teoria da Computação (ETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/etc.2019.6399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the Cable-Trench Problem (CTP), the objective is to find a rooted spanning tree of a weighted graph that minimizes the length of the tree, scaled by a non-negative factor , plus the sum of all shortest-path lengths from the root, scaled by another non-negative factor. This is an intermediate optimization problem between the Single-Destination Shortest Path Problem and the Minimum Spanning Tree Problem. In this extended abstract, we consider the Generalized CTP (GCTP), in which some vertices need not be connected to the root, but may serve as cost-saving merging points; this variant also generalizes the Steiner Tree Problem. We present an 8.599-approximation algorithm for GCTP. Before this paper, no constant approximation for the standard CTP was known.
广义电缆沟问题的常因子逼近
在电缆沟问题(CTP)中,目标是找到加权图的根生成树,该树的长度最小,由一个非负因子缩放,加上从根开始的所有最短路径长度的总和,由另一个非负因子缩放。这是一个介于单目标最短路径问题和最小生成树问题之间的中间优化问题。在这个扩展摘要中,我们考虑广义CTP (GCTP),其中一些顶点不需要连接到根,但可以作为节省成本的归并点;这种变体也推广了斯坦纳树问题。我们提出了一种8.599逼近GCTP算法。在本文之前,没有标准CTP的常数近似值是已知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信