Deep Convolutional Neural Network for Fire Detection

J. Gotthans, T. Gotthans, R. Maršálek
{"title":"Deep Convolutional Neural Network for Fire Detection","authors":"J. Gotthans, T. Gotthans, R. Maršálek","doi":"10.1109/RADIOELEKTRONIKA49387.2020.9092344","DOIUrl":null,"url":null,"abstract":"Fire detection from video has become possible and more feasible in prevention of fire disaster due to deep convolutional neural networks (CNNs) and embedded processing hardware. Artificial intelligence (AI) methods generally require more computational time and hardware with powerful graphical processing unit (GPU). In this paper, we propose cost-effective deep CNN architecture for fire detection from video with respect to computational performance of Jetson Nano from NVIDIA. In our paper we compare CNN networks (AlexNet and SqueezeNet) with our proposed CNN architecture. The proposed CNN architecture finds equilibrium between efficiency and accuracy for target system (Jetson Nano). We used CNNs which show high accuracy and low loss.","PeriodicalId":131117,"journal":{"name":"2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"16 7-8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Fire detection from video has become possible and more feasible in prevention of fire disaster due to deep convolutional neural networks (CNNs) and embedded processing hardware. Artificial intelligence (AI) methods generally require more computational time and hardware with powerful graphical processing unit (GPU). In this paper, we propose cost-effective deep CNN architecture for fire detection from video with respect to computational performance of Jetson Nano from NVIDIA. In our paper we compare CNN networks (AlexNet and SqueezeNet) with our proposed CNN architecture. The proposed CNN architecture finds equilibrium between efficiency and accuracy for target system (Jetson Nano). We used CNNs which show high accuracy and low loss.
火灾探测的深度卷积神经网络
由于深度卷积神经网络(cnn)和嵌入式处理硬件的发展,从视频中进行火灾探测在预防火灾方面变得更加可能和可行。人工智能(AI)方法通常需要更多的计算时间和强大的图形处理单元(GPU)硬件。在本文中,我们根据NVIDIA的Jetson Nano的计算性能,提出了具有成本效益的深度CNN架构,用于视频火灾检测。在本文中,我们将CNN网络(AlexNet和SqueezeNet)与我们提出的CNN架构进行了比较。提出的CNN架构在目标系统(Jetson Nano)的效率和精度之间找到了平衡。我们使用了准确率高、损耗低的cnn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信