Evolving kernel functions for SVMs by genetic programming

L. Dioşan, A. Rogozan, J. Pécuchet
{"title":"Evolving kernel functions for SVMs by genetic programming","authors":"L. Dioşan, A. Rogozan, J. Pécuchet","doi":"10.1109/ICMLA.2007.70","DOIUrl":null,"url":null,"abstract":"hybrid model for evolving support vector machine (SVM) kernel functions is developed in this paper. The kernel expression is considered as a parameter of the SVM algorithm and the current approach tries to find the best expression for this SVM parameter. The model is a hybrid technique that combines a genetic programming (GP) algorithm and a support vector machine (SVM) algorithm. Each GP chromosome is a tree encoding the mathematical expression for the kernel function. The evolved kernel is compared to several human-designed kernels and to a previous genetic kernel on several datasets. Numerical experiments show that the SVM embedding our evolved kernel performs statistically better than standard kernels, but also than previous genetic kernel for all considered classification problems.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

hybrid model for evolving support vector machine (SVM) kernel functions is developed in this paper. The kernel expression is considered as a parameter of the SVM algorithm and the current approach tries to find the best expression for this SVM parameter. The model is a hybrid technique that combines a genetic programming (GP) algorithm and a support vector machine (SVM) algorithm. Each GP chromosome is a tree encoding the mathematical expression for the kernel function. The evolved kernel is compared to several human-designed kernels and to a previous genetic kernel on several datasets. Numerical experiments show that the SVM embedding our evolved kernel performs statistically better than standard kernels, but also than previous genetic kernel for all considered classification problems.
基于遗传规划的支持向量机核函数演化
本文提出了支持向量机核函数演化的混合模型。将核表达式作为支持向量机算法的一个参数,目前的方法试图找到该支持向量机参数的最佳表达式。该模型是一种遗传规划(GP)算法和支持向量机(SVM)算法相结合的混合技术。每个GP染色体是一个编码核函数数学表达式的树。在几个数据集上,将进化的核与几个人类设计的核和先前的遗传核进行比较。数值实验表明,对于所有考虑的分类问题,嵌入我们进化核的支持向量机在统计性能上优于标准核,也优于以前的遗传核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信