{"title":"Activity Recognition using Fully Convolutional Network from Smartphone Accelerometer","authors":"Mooseop Kim, C. Jeong, Hyung-Cheol Shin","doi":"10.1109/ICTC.2018.8539419","DOIUrl":null,"url":null,"abstract":"This paper presents an activity recognition using smartphone built-in accelerometer. One of the most important issues in implementing activity recognition on embedded systems, including smartphones, is to achieve a high accuracy with a low computational cost and low memory usage. In this paper, we propose an activity recognition using the fully convolutional networks and introduce a new method to generate an input signal image using the combination of deep features and orientation-independent features. The experimental results show that the proposed method is able to achieve a high accuracy with a low memory usage.","PeriodicalId":417962,"journal":{"name":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC.2018.8539419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper presents an activity recognition using smartphone built-in accelerometer. One of the most important issues in implementing activity recognition on embedded systems, including smartphones, is to achieve a high accuracy with a low computational cost and low memory usage. In this paper, we propose an activity recognition using the fully convolutional networks and introduce a new method to generate an input signal image using the combination of deep features and orientation-independent features. The experimental results show that the proposed method is able to achieve a high accuracy with a low memory usage.