Saliency-Guided Image Translation

Lai Jiang, Mai Xu, Xiaofei Wang, L. Sigal
{"title":"Saliency-Guided Image Translation","authors":"Lai Jiang, Mai Xu, Xiaofei Wang, L. Sigal","doi":"10.1109/CVPR46437.2021.01624","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel task for saliency-guided image translation, with the goal of image-to-image translation conditioned on the user specified saliency map. To address this problem, we develop a novel Generative Adversarial Network (GAN)-based model, called SalG-GAN. Given the original image and target saliency map, SalG-GAN can generate a translated image that satisfies the target saliency map. In SalG-GAN, a disentangled representation framework is proposed to encourage the model to learn diverse translations for the same target saliency condition. A saliency-based attention module is introduced as a special attention mechanism for facilitating the developed structures of saliency-guided generator, saliency cue encoder and saliency-guided global and local discriminators. Furthermore, we build a synthetic dataset and a real-world dataset with labeled visual attention for training and evaluating our SalG-GAN. The experimental results over both datasets verify the effectiveness of our model for saliency-guided image translation.","PeriodicalId":339646,"journal":{"name":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"417 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR46437.2021.01624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we propose a novel task for saliency-guided image translation, with the goal of image-to-image translation conditioned on the user specified saliency map. To address this problem, we develop a novel Generative Adversarial Network (GAN)-based model, called SalG-GAN. Given the original image and target saliency map, SalG-GAN can generate a translated image that satisfies the target saliency map. In SalG-GAN, a disentangled representation framework is proposed to encourage the model to learn diverse translations for the same target saliency condition. A saliency-based attention module is introduced as a special attention mechanism for facilitating the developed structures of saliency-guided generator, saliency cue encoder and saliency-guided global and local discriminators. Furthermore, we build a synthetic dataset and a real-world dataset with labeled visual attention for training and evaluating our SalG-GAN. The experimental results over both datasets verify the effectiveness of our model for saliency-guided image translation.
显著性引导的图像翻译
在本文中,我们提出了一种新的显著性引导图像翻译任务,其目标是在用户指定的显著性映射的条件下进行图像到图像的翻译。为了解决这个问题,我们开发了一种新的基于生成对抗网络(GAN)的模型,称为SalG-GAN。给定原始图像和目标显著性图,SalG-GAN可以生成满足目标显著性图的翻译图像。在SalG-GAN中,提出了一个解纠缠的表示框架,以鼓励模型在相同的目标显著性条件下学习不同的翻译。基于显著性的注意模块作为一种特殊的注意机制,促进了显著性引导生成器、显著性线索编码器和显著性引导全局和局部鉴别器结构的发展。此外,我们构建了一个合成数据集和一个带有标记视觉注意力的真实数据集,用于训练和评估我们的SalG-GAN。在两个数据集上的实验结果验证了我们的模型在显著性引导下的图像翻译中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信