Chen Tan, Wei Huang, Yonghui Fan, Jing Li, Chuanhao Yu, Wenbo Shi, Shiti Huang, Zhenyu Yin, Chenfan Cao, Lei Jing, Zhixiong Ren, Xiaoyan Gui, Bing Zhang, Dan Li, Li Geng
{"title":"A 10/2.5-Gb/s Hyper-Supplied CMOS Low-Noise Burst-Mode TIA with Loud Burst Protection and Gearbox Automatic Offset Cancellation for XGS-PON","authors":"Chen Tan, Wei Huang, Yonghui Fan, Jing Li, Chuanhao Yu, Wenbo Shi, Shiti Huang, Zhenyu Yin, Chenfan Cao, Lei Jing, Zhixiong Ren, Xiaoyan Gui, Bing Zhang, Dan Li, Li Geng","doi":"10.1109/CICC53496.2022.9772848","DOIUrl":null,"url":null,"abstract":"The surge of internet bandwidth recently has accelerated the upgrade of the Passive Optical Network (PON) from 1.25Gb/s GPON to 10Gb/s class XGS-PON with massive volume. As a key component, the burst-mode transimpedance amplifier (BM-TIA) is required to cope with the BM data from multiple users. Previously, high performance BM-TIAs were made mostly by SiGe [1]–[3], contrasting the prospect of economics. At least three issues have hindered CMOS from being widely employed in BM-TIA compared with SiGe. 1) Noise: the relatively poor analog performance as well as limited power supply voltage from CMOS makes low noise difficult to achieve. 2) Breakdown protection: the low breakdown voltage makes CMOS much more fragile to loud bursts. 3) Fast BM response: the low supply voltage renders the CMOS biasing point delicate, which increases the complexity and duration for the circuit to recover from a burst event. Previous CMOS-TIAs [4], [5] have achieved fast BM response, but their topologies are incompatible with current TOCAN based commercial applications which can only house the analog front-end. In this work, we address the noise, breakdown, and fast BM response altogether, paving the way for CMOS to be used in commercial BM application in 10Gb/s class PON and beyond.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The surge of internet bandwidth recently has accelerated the upgrade of the Passive Optical Network (PON) from 1.25Gb/s GPON to 10Gb/s class XGS-PON with massive volume. As a key component, the burst-mode transimpedance amplifier (BM-TIA) is required to cope with the BM data from multiple users. Previously, high performance BM-TIAs were made mostly by SiGe [1]–[3], contrasting the prospect of economics. At least three issues have hindered CMOS from being widely employed in BM-TIA compared with SiGe. 1) Noise: the relatively poor analog performance as well as limited power supply voltage from CMOS makes low noise difficult to achieve. 2) Breakdown protection: the low breakdown voltage makes CMOS much more fragile to loud bursts. 3) Fast BM response: the low supply voltage renders the CMOS biasing point delicate, which increases the complexity and duration for the circuit to recover from a burst event. Previous CMOS-TIAs [4], [5] have achieved fast BM response, but their topologies are incompatible with current TOCAN based commercial applications which can only house the analog front-end. In this work, we address the noise, breakdown, and fast BM response altogether, paving the way for CMOS to be used in commercial BM application in 10Gb/s class PON and beyond.