Combined Approach to Detect Anomalies in Health Care Datasets

A. Sysoev, Roman Scheglevatych
{"title":"Combined Approach to Detect Anomalies in Health Care Datasets","authors":"A. Sysoev, Roman Scheglevatych","doi":"10.1109/SUMMA48161.2019.8947605","DOIUrl":null,"url":null,"abstract":"Big data characterizing the quality of medical health care services provided to the population contain anomaly observations, which are either results of technical errors in filling databases, or falsified data. In the context of insurance medicine, the actual task is to identify such observation. The paper presents an approach to identify outliers in the database of medical health care information system based on the combination of Isolating Forest algorithm and subsequent neural network classifier.","PeriodicalId":163496,"journal":{"name":"2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUMMA48161.2019.8947605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Big data characterizing the quality of medical health care services provided to the population contain anomaly observations, which are either results of technical errors in filling databases, or falsified data. In the context of insurance medicine, the actual task is to identify such observation. The paper presents an approach to identify outliers in the database of medical health care information system based on the combination of Isolating Forest algorithm and subsequent neural network classifier.
检测医疗保健数据集异常的综合方法
描述向人口提供的医疗保健服务质量的大数据包含异常观测,这些异常观测要么是填充数据库时的技术错误,要么是数据伪造的结果。在保险医学的背景下,实际的任务是识别这样的观察。提出了一种基于隔离森林算法和后续神经网络分类器相结合的医疗卫生信息系统数据库异常点识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信