Automatic Recognition of Allusions in Tang Poetry Based on BERT

Xuemei Tang, Shichen Liang, Jianyu Zheng, Renfen Hu, Zhiying Liu
{"title":"Automatic Recognition of Allusions in Tang Poetry Based on BERT","authors":"Xuemei Tang, Shichen Liang, Jianyu Zheng, Renfen Hu, Zhiying Liu","doi":"10.1109/IALP48816.2019.9037679","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an automated method for recognize allusions in Tang poetry. The representation of text is trained by BERT pre-trained by The SiKuQuanShu. The TOP-20 candidate allusions have the highest semantic similarity to the original sentence. Then update the ranking of candidate allusions by rule-based ranking algorithm. In the final experimental results, the precision of the correct allusion same as the final ranking TOP-I reached 63.74%, the precision of the correct allusion appears in the final ranking TOP-3 reached 70.66%, and the precision of the correct allusion appears in the final ranking TOP-5 reached 74.82%.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose an automated method for recognize allusions in Tang poetry. The representation of text is trained by BERT pre-trained by The SiKuQuanShu. The TOP-20 candidate allusions have the highest semantic similarity to the original sentence. Then update the ranking of candidate allusions by rule-based ranking algorithm. In the final experimental results, the precision of the correct allusion same as the final ranking TOP-I reached 63.74%, the precision of the correct allusion appears in the final ranking TOP-3 reached 70.66%, and the precision of the correct allusion appears in the final ranking TOP-5 reached 74.82%.
基于BERT的唐诗典故自动识别
本文提出了一种自动识别唐诗典故的方法。文本的表示由The SiKuQuanShu预训练的BERT进行训练。前20个候选典故与原句的语义相似度最高。然后通过基于规则的排序算法更新候选典故的排序。在最终的实验结果中,与最终排名top - 1相同的正确典故的精度达到63.74%,最终排名TOP-3的正确典故出现的精度达到70.66%,最终排名TOP-5的正确典故出现的精度达到74.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信