Multimodal and Multiresolution Depression Detection from Speech and Facial Landmark Features

Md. Nasir, Arindam Jati, P. G. Shivakumar, Sandeep Nallan Chakravarthula, P. Georgiou
{"title":"Multimodal and Multiresolution Depression Detection from Speech and Facial Landmark Features","authors":"Md. Nasir, Arindam Jati, P. G. Shivakumar, Sandeep Nallan Chakravarthula, P. Georgiou","doi":"10.1145/2988257.2988261","DOIUrl":null,"url":null,"abstract":"Automatic classification of depression using audiovisual cues can help towards its objective diagnosis. In this paper, we present a multimodal depression classification system as a part of the 2016 Audio/Visual Emotion Challenge and Workshop (AVEC2016). We investigate a number of audio and video features for classification with different fusion techniques and temporal contexts. In the audio modality, Teager energy cepstral coefficients~(TECC) outperform standard baseline features; while the best accuracy is achieved with i-vector modelling based on MFCC features. On the other hand, polynomial parameterization of facial landmark features achieves the best performance among all systems and outperforms the best baseline system as well.","PeriodicalId":432793,"journal":{"name":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2988257.2988261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

Abstract

Automatic classification of depression using audiovisual cues can help towards its objective diagnosis. In this paper, we present a multimodal depression classification system as a part of the 2016 Audio/Visual Emotion Challenge and Workshop (AVEC2016). We investigate a number of audio and video features for classification with different fusion techniques and temporal contexts. In the audio modality, Teager energy cepstral coefficients~(TECC) outperform standard baseline features; while the best accuracy is achieved with i-vector modelling based on MFCC features. On the other hand, polynomial parameterization of facial landmark features achieves the best performance among all systems and outperforms the best baseline system as well.
基于语音和面部地标特征的多模态多分辨率凹陷检测
利用视听线索对抑郁症进行自动分类有助于对其进行客观诊断。在本文中,我们提出了一个多模态抑郁症分类系统,作为2016年视听情感挑战和研讨会(AVEC2016)的一部分。我们研究了一些音频和视频的特征分类与不同的融合技术和时间背景。在音频模态中,Teager能量倒谱系数~(TECC)优于标准基线特征;而基于MFCC特征的i向量建模可以达到最好的精度。另一方面,面部标志特征的多项式参数化在所有系统中取得了最好的性能,并且优于最佳基线系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信