Disturbance Magnitude Estimation using Artificial Neural Network Method

J. Hartono, P. Pramana, H. B. Tambunan, B. S. Munir
{"title":"Disturbance Magnitude Estimation using Artificial Neural Network Method","authors":"J. Hartono, P. Pramana, H. B. Tambunan, B. S. Munir","doi":"10.1109/ICEEI47359.2019.8988903","DOIUrl":null,"url":null,"abstract":"The approach of this paper is to estimate the generated power of a generation that encounters an outage in a power system from the frequency response under a few seconds after transient state of the disturbance. By knowing the magnitude of the supply, the removed load may be adjusted with adaptive under frequency load shedding (AUFLS) relay that lead stable in frequency system. The method of estimation is using the Artificial Neural Network (ANN), the data training is obtained from the swing equation, then tested using The New England IEEE 39 Bus System from the frequency response after disturbance for every generator. The objective is to compare the error of three minimum sampling time that used shortly after the disturbance.","PeriodicalId":236517,"journal":{"name":"2019 International Conference on Electrical Engineering and Informatics (ICEEI)","volume":"5 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrical Engineering and Informatics (ICEEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEI47359.2019.8988903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The approach of this paper is to estimate the generated power of a generation that encounters an outage in a power system from the frequency response under a few seconds after transient state of the disturbance. By knowing the magnitude of the supply, the removed load may be adjusted with adaptive under frequency load shedding (AUFLS) relay that lead stable in frequency system. The method of estimation is using the Artificial Neural Network (ANN), the data training is obtained from the swing equation, then tested using The New England IEEE 39 Bus System from the frequency response after disturbance for every generator. The objective is to compare the error of three minimum sampling time that used shortly after the disturbance.
基于人工神经网络的干扰强度估计
本文的方法是根据扰动暂态后几秒内的频率响应来估计电力系统中遇到停电时的发电功率。通过了解电源的大小,可以使用自适应低频减载继电器对被移出的负载进行调整,使频率系统保持稳定。估计方法采用人工神经网络(ANN),由摆动方程得到训练数据,然后利用新英格兰IEEE 39总线系统对各发电机扰动后的频率响应进行测试。目的是比较干扰后不久使用的三个最小采样时间的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信