Uji Algoritma Stacking Ensemble Classifier pada Kemampuan Adaptasi Mahasiswa Baru dalam Pembelajaran Online

Anastasia Kinanti Putri, Hari Suparwito
{"title":"Uji Algoritma Stacking Ensemble Classifier pada Kemampuan Adaptasi Mahasiswa Baru dalam Pembelajaran Online","authors":"Anastasia Kinanti Putri, Hari Suparwito","doi":"10.24002/konstelasi.v3i1.7009","DOIUrl":null,"url":null,"abstract":"Perubahan metode pembelajaran dari sistem kelas ke online membawa dampak yang sangat signifikan. Mahasiswa dituntut mampu beradaptasi pada perubahan pola belajar mengajar. Penelitian ini bertujuan untuk melakukan klasifikasi kemampuan adaptasi mahasiswa baru dalam pembelajaran online dengan pendekatan machine learning menggunakan algoritma stacking ensemble. Metode penelitian menggunakan penggabungan single classifier dengan teknik ensemble stacking atau stacked generalization menggunakan Random Forest, Decision Tree, K-Nearest Neighbor, Support Vector Machine, dan Neural Network sebagai base learner dan Logistic Regression sebagai meta learner. Dari penelitian yang dilakukan, didapatkan f-1 score pada Random Forest sebesar 89.26%, Decision Tree 88.58%, K-NN 84.25%, SVM 88.98%, Neural Network 89.06%, Logistic Regression 89.07%, dan Stacking 88.86%. Meski dibandingkan dengan single classifier seperti Decision Tree dan K- NN, akurasi pada Stacking meningkat, akan tetapi tidak lebih optimal dari Random Forest, SVM, Neural Network, maupun Logistic Regression. Validasi keakuratan model menggunakan Cross Validation menghasilkan f-1 score konstan berada pada angka 88% untuk setiap n-fold yang menunjukkan bahwa model stacking yang diimplementasikan sudah baik dan stabil. Hal tersebut juga ditunjukkan pada hasil uji stabilitas algoritma stacking menggunakan data random yang berjumlah 10 dan 5 record masing-masing sebanyak 5 kali percobaan, hasil yang didapatkan f-1 score konsisten berada pada angka 88%.","PeriodicalId":163388,"journal":{"name":"KONSTELASI: Konvergensi Teknologi dan Sistem Informasi","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KONSTELASI: Konvergensi Teknologi dan Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/konstelasi.v3i1.7009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perubahan metode pembelajaran dari sistem kelas ke online membawa dampak yang sangat signifikan. Mahasiswa dituntut mampu beradaptasi pada perubahan pola belajar mengajar. Penelitian ini bertujuan untuk melakukan klasifikasi kemampuan adaptasi mahasiswa baru dalam pembelajaran online dengan pendekatan machine learning menggunakan algoritma stacking ensemble. Metode penelitian menggunakan penggabungan single classifier dengan teknik ensemble stacking atau stacked generalization menggunakan Random Forest, Decision Tree, K-Nearest Neighbor, Support Vector Machine, dan Neural Network sebagai base learner dan Logistic Regression sebagai meta learner. Dari penelitian yang dilakukan, didapatkan f-1 score pada Random Forest sebesar 89.26%, Decision Tree 88.58%, K-NN 84.25%, SVM 88.98%, Neural Network 89.06%, Logistic Regression 89.07%, dan Stacking 88.86%. Meski dibandingkan dengan single classifier seperti Decision Tree dan K- NN, akurasi pada Stacking meningkat, akan tetapi tidak lebih optimal dari Random Forest, SVM, Neural Network, maupun Logistic Regression. Validasi keakuratan model menggunakan Cross Validation menghasilkan f-1 score konstan berada pada angka 88% untuk setiap n-fold yang menunjukkan bahwa model stacking yang diimplementasikan sudah baik dan stabil. Hal tersebut juga ditunjukkan pada hasil uji stabilitas algoritma stacking menggunakan data random yang berjumlah 10 dan 5 record masing-masing sebanyak 5 kali percobaan, hasil yang didapatkan f-1 score konsisten berada pada angka 88%.
课堂系统的学习方法到网上的转变产生了深远的影响。学生需要适应教学模式的改变。本研究的目的是用可编程的算法对一名大一新生在网上学习中的适应能力进行分类。该研究方法采用了一种结合经典材料和组合组合技术的组合组合,使用随机森林、决策树、K-Nearest Tree、K-Nearest Machine和神经网络作为元意识形态学习的基础和逻辑回归。根据所做的研究,在随机森林中以89.26%的成绩获得f-1分,估计树88.58%,cms 84.25%, SVM 88. 06%,神经回路89.06%,以及88.86%的部署。尽管与《Decision Tree》和《K- NN》等经典之作相比,打击率的准确性增加了,但并不比随机森林、SVM、神经网络和逻辑回归更理想。使用交叉验证模型,f-1分数不变,每n-fold的得分为88%,这表明实现的停滞模型是好的和稳定的。这也说明了计数算法的稳定性测试结果,每次测试10到5次,f-1分数的结果是88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信