A Sequential $L_{p}$-norm Filter for Robust Estimation

Yang Yang
{"title":"A Sequential $L_{p}$-norm Filter for Robust Estimation","authors":"Yang Yang","doi":"10.23919/FUSION45008.2020.9190602","DOIUrl":null,"url":null,"abstract":"A novel robust sequential $L_{p}$ filter is developed in this paper by leveraging the maximum a posteriori estimation theory and using generalised normal distributions to represent both state prediction errors and measurement residuals. The formulation leads to the flexibility of choosing the parameter $p$ for two different types of aforementioned error sources. Numerical simulations are given for a nonlinear ground tracking scenario, with measurements corrupted with outliers. Results indicate the new $L_{p}$ -norm filter presents robustness to filter initialisation errors and measurement outliers and outperforms a standard unscented Kalman filters and the Huber unscented Kalman filter in terms of error statistics.","PeriodicalId":419881,"journal":{"name":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","volume":"46 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FUSION45008.2020.9190602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel robust sequential $L_{p}$ filter is developed in this paper by leveraging the maximum a posteriori estimation theory and using generalised normal distributions to represent both state prediction errors and measurement residuals. The formulation leads to the flexibility of choosing the parameter $p$ for two different types of aforementioned error sources. Numerical simulations are given for a nonlinear ground tracking scenario, with measurements corrupted with outliers. Results indicate the new $L_{p}$ -norm filter presents robustness to filter initialisation errors and measurement outliers and outperforms a standard unscented Kalman filters and the Huber unscented Kalman filter in terms of error statistics.
一种用于鲁棒估计的序列$L_{p}$范数滤波器
本文利用最大后验估计理论,利用广义正态分布来表示状态预测误差和测量残差,提出了一种新的鲁棒序列$L_{p}$滤波器。该公式为上述两种不同类型的误差源选择参数$p$提供了灵活性。给出了一种测量值被异常值破坏的非线性地面跟踪场景的数值模拟。结果表明,新的$L_{p}$ -范数滤波器对初始化误差和测量异常值具有鲁棒性,并且在误差统计方面优于标准无气味卡尔曼滤波器和Huber无气味卡尔曼滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信