Deep Learning Applications in Mobile Networks

Dejan Dašić, Miljan Vucetic, Gardelito Hew A Kee, M. Stanković
{"title":"Deep Learning Applications in Mobile Networks","authors":"Dejan Dašić, Miljan Vucetic, Gardelito Hew A Kee, M. Stanković","doi":"10.15308/SINTEZA-2019-553-560","DOIUrl":null,"url":null,"abstract":"The expected deployment of 5G networks, growing percentages of mobile networks’ market penetration levels and increasing popularity of mobile applications induce new challenges and requirements for mobile network operators. One of the ways of tackling these new challenges is the deployment of advanced machine learning techniques in hopes of handling expected traffic volumes, performing real-time analytics and managing network resources. The paper presents the aspects of mobile networking in which deep learning methods can be implemented. After presenting the basic background and modern deep learning techniques and related technologies, paper presents an overview of the current advances made in these research areas. The paper also identifies the fields within the realm of mobile networking that show particular potential for new exploration.","PeriodicalId":342313,"journal":{"name":"Proceedings of the International Scientific Conference - Sinteza 2019","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Scientific Conference - Sinteza 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15308/SINTEZA-2019-553-560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The expected deployment of 5G networks, growing percentages of mobile networks’ market penetration levels and increasing popularity of mobile applications induce new challenges and requirements for mobile network operators. One of the ways of tackling these new challenges is the deployment of advanced machine learning techniques in hopes of handling expected traffic volumes, performing real-time analytics and managing network resources. The paper presents the aspects of mobile networking in which deep learning methods can be implemented. After presenting the basic background and modern deep learning techniques and related technologies, paper presents an overview of the current advances made in these research areas. The paper also identifies the fields within the realm of mobile networking that show particular potential for new exploration.
移动网络中的深度学习应用
5G网络的预期部署、移动网络市场渗透率的增长以及移动应用的日益普及,给移动网络运营商带来了新的挑战和要求。应对这些新挑战的方法之一是部署先进的机器学习技术,以期处理预期的流量,执行实时分析和管理网络资源。本文介绍了移动网络中可以实现深度学习方法的各个方面。本文在介绍了深度学习的基本背景和现代深度学习技术及相关技术的基础上,对这些研究领域的最新进展进行了概述。本文还指出了移动网络领域中显示出特别潜力的新探索领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信