An integrated visualization system for interactive analysis of large, heterogeneous cosmology data

A. Preston, Ramyar Ghods, Jingrong Xie, F. Sauer, Nick Leaf, K. Ma, Esteban Rangel, E. Kovacs, K. Heitmann, S. Habib
{"title":"An integrated visualization system for interactive analysis of large, heterogeneous cosmology data","authors":"A. Preston, Ramyar Ghods, Jingrong Xie, F. Sauer, Nick Leaf, K. Ma, Esteban Rangel, E. Kovacs, K. Heitmann, S. Habib","doi":"10.1109/PACIFICVIS.2016.7465250","DOIUrl":null,"url":null,"abstract":"Cosmological simulations produce a multitude of data types whose large scale makes them difficult to thoroughly explore in an interactive setting. One aspect of particular interest to scientists is the evolution of groups of dark matter particles, or \"halos,\" described by merger trees. However, in order to fully understand subtleties in the merger trees, other data types derived from the simulation must be incorporated as well. In this work, we develop a novel interactive linked-view visualization system that focuses on simultaneously exploring dark matter halos, their hierarchical evolution, corresponding particle data, and other quantitative information. We employ a parallel remote renderer and a local merger tree selection tool so that users can analyze large data sets interactively. This allows scientists to assess their simulation code, understand inconsistencies in extracted data, and intuitively understand simulation behavior on all scales. We demonstrate the effectiveness of our system through a set of case studies on large-scale cosmological data from the HACC (Hardware/Hybrid Accelerated Cosmology Code) simulation framework.","PeriodicalId":129600,"journal":{"name":"2016 IEEE Pacific Visualization Symposium (PacificVis)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2016.7465250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Cosmological simulations produce a multitude of data types whose large scale makes them difficult to thoroughly explore in an interactive setting. One aspect of particular interest to scientists is the evolution of groups of dark matter particles, or "halos," described by merger trees. However, in order to fully understand subtleties in the merger trees, other data types derived from the simulation must be incorporated as well. In this work, we develop a novel interactive linked-view visualization system that focuses on simultaneously exploring dark matter halos, their hierarchical evolution, corresponding particle data, and other quantitative information. We employ a parallel remote renderer and a local merger tree selection tool so that users can analyze large data sets interactively. This allows scientists to assess their simulation code, understand inconsistencies in extracted data, and intuitively understand simulation behavior on all scales. We demonstrate the effectiveness of our system through a set of case studies on large-scale cosmological data from the HACC (Hardware/Hybrid Accelerated Cosmology Code) simulation framework.
一个集成的可视化系统,用于对大型异构宇宙学数据进行交互分析
宇宙学模拟产生了大量的数据类型,它们的大规模使得它们难以在交互式环境中进行彻底的探索。科学家们特别感兴趣的一个方面是暗物质粒子群的演化,或称“光晕”,用合并树来描述。然而,为了充分理解合并树中的微妙之处,还必须合并来自模拟的其他数据类型。在这项工作中,我们开发了一种新的交互式链接视图可视化系统,该系统专注于同时探索暗物质晕,它们的分层演化,相应的粒子数据和其他定量信息。我们采用并行远程渲染器和本地合并树选择工具,以便用户可以交互式地分析大型数据集。这使科学家能够评估他们的模拟代码,理解提取数据中的不一致性,并直观地理解所有尺度上的模拟行为。我们通过一组来自HACC(硬件/混合加速宇宙学代码)模拟框架的大规模宇宙学数据的案例研究来证明我们系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信