Image analysis using separable Krawtchouk-Tchebichef's moments

H. Karmouni, Tarik Jahid, Imad El Affar, M. Sayyouri, A. Hmimid, H. Qjidaa, A. Rezzouk
{"title":"Image analysis using separable Krawtchouk-Tchebichef's moments","authors":"H. Karmouni, Tarik Jahid, Imad El Affar, M. Sayyouri, A. Hmimid, H. Qjidaa, A. Rezzouk","doi":"10.1109/ATSIP.2017.8075581","DOIUrl":null,"url":null,"abstract":"In this paper, we will present a new method of image reconstruction using a new type of separable discrete orthogonal moments called the Krawtchouk-Tchebichef moments. The latter are based on the bivariate discrete orthogonal polynomials defined from the product of Krawtchouk and Tchebichef of discrete orthogonal polynomials with a variable. The new method of image reconstruction is made from the blocks of each slice of the image using the Krawtchouk-Tchebichef moments for small orders. By experiments we show the effectiveness of our method with respect to the global approach of image reconstruction and the possibility of reconstructing the image by the Krawtchouk-Tchebichef moments is compared to the classical moments of Tchebichef and Krawtchouk.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, we will present a new method of image reconstruction using a new type of separable discrete orthogonal moments called the Krawtchouk-Tchebichef moments. The latter are based on the bivariate discrete orthogonal polynomials defined from the product of Krawtchouk and Tchebichef of discrete orthogonal polynomials with a variable. The new method of image reconstruction is made from the blocks of each slice of the image using the Krawtchouk-Tchebichef moments for small orders. By experiments we show the effectiveness of our method with respect to the global approach of image reconstruction and the possibility of reconstructing the image by the Krawtchouk-Tchebichef moments is compared to the classical moments of Tchebichef and Krawtchouk.
利用可分离克劳楚克-切比切夫矩进行图像分析
在本文中,我们将提出一种新的图像重建方法,使用一种新的可分离的离散正交矩,称为克劳楚克-切比切夫矩。后者是基于由离散正交多项式的Krawtchouk和chebichef积定义的二元离散正交多项式。新的图像重建方法是利用小阶的克劳楚克-切比切夫矩从图像的每个切片的块中进行重建。通过实验,我们证明了我们的方法在图像重建的全局方法方面的有效性,并将Krawtchouk- chebichef矩与经典的Tchebichef矩和Krawtchouk矩进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信