{"title":"MLP4ML: Machine Learning Service Recommendation System using MLP","authors":"Bayan I. Alghofaily, Chen Ding","doi":"10.1109/SCC49832.2020.00020","DOIUrl":null,"url":null,"abstract":"In this work, we propose a unique approach for Machine Learning (ML) service recommendation using multilayer perceptron architecture. A service is recommended based on its predicted performance on the input dataset. We take Quality of Services (QoS) as the performance indicator. Depending on the application domain and user requirements, the importance level of different QoS attributes could be different. For ML services, their QoS values are affected by both the input dataset and the service. It would be helpful if we can include their features into the recommendation model. In this work, we consider two types of side information: features of the services and of the user (in our case the dataset given by the user). In the experiment, we take OpenML as our data source and extract QoS values of multiple classification services running on 390 datasets. The result shows that dataset-service interactions can be used to predict the performance of a service on a given dataset. When we integrate all the side information, the performance is better than using the interaction data alone in terms of both prediction and recommendation accuracy.","PeriodicalId":274909,"journal":{"name":"2020 IEEE International Conference on Services Computing (SCC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC49832.2020.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, we propose a unique approach for Machine Learning (ML) service recommendation using multilayer perceptron architecture. A service is recommended based on its predicted performance on the input dataset. We take Quality of Services (QoS) as the performance indicator. Depending on the application domain and user requirements, the importance level of different QoS attributes could be different. For ML services, their QoS values are affected by both the input dataset and the service. It would be helpful if we can include their features into the recommendation model. In this work, we consider two types of side information: features of the services and of the user (in our case the dataset given by the user). In the experiment, we take OpenML as our data source and extract QoS values of multiple classification services running on 390 datasets. The result shows that dataset-service interactions can be used to predict the performance of a service on a given dataset. When we integrate all the side information, the performance is better than using the interaction data alone in terms of both prediction and recommendation accuracy.