M. Chaibi, T. Fernandez, J. R. Tellez, A. Tazón, M. Aghoutane
{"title":"Modelling of temperature and dispersion effects in MESFET and HEMT transistors","authors":"M. Chaibi, T. Fernandez, J. R. Tellez, A. Tazón, M. Aghoutane","doi":"10.1109/INMMIC.2008.4745745","DOIUrl":null,"url":null,"abstract":"In this paper, an accurate technique to model temperature, bias, and frequency dispersion effects in MESFET and HEMT transistors is presented. The approach is based on a single drain to source current source I ds nonlinear model. Pulsed I/V characteristics measurements are used to model bias and frequency dispersion effects while temperature is directly implemented in the I ds equation. Model parameters extraction strategy is simple, being based just on a few measurements. The approach validity is verified by comparing the simulated and measured I/V characteristics of the device tested under continuous and pulsed excitation. Large-signal simulation results show that the model can efficiently predict the output power under different bias and temperature conditions.","PeriodicalId":205987,"journal":{"name":"2008 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits","volume":"395 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMMIC.2008.4745745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, an accurate technique to model temperature, bias, and frequency dispersion effects in MESFET and HEMT transistors is presented. The approach is based on a single drain to source current source I ds nonlinear model. Pulsed I/V characteristics measurements are used to model bias and frequency dispersion effects while temperature is directly implemented in the I ds equation. Model parameters extraction strategy is simple, being based just on a few measurements. The approach validity is verified by comparing the simulated and measured I/V characteristics of the device tested under continuous and pulsed excitation. Large-signal simulation results show that the model can efficiently predict the output power under different bias and temperature conditions.