Edge Detection Algorithm for Power Operation Monitoring Video Based on AI Technology

Jinzhu Liu, Ziliang Ma, Xuan Zhang, Sida Ma
{"title":"Edge Detection Algorithm for Power Operation Monitoring Video Based on AI Technology","authors":"Jinzhu Liu, Ziliang Ma, Xuan Zhang, Sida Ma","doi":"10.1109/EEI59236.2023.10212430","DOIUrl":null,"url":null,"abstract":"In this paper, a video edge detection algorithm based on AI technology is presented to improve the accuracy of power operation safety monitoring. Firstly, the block and low rank tensor recovery video denoising algorithm is used to filter out internal noise in videos, which improves video clarity and makes video edge information more prominent. Secondly, the proximal support vector machine (PSVM) is used to detect the edges of denoised videos, thereby improving the effectiveness of video edge detection. The experimental results show that the proposed algorithm outperforms other algorithms in video edge detection, further ensuring the safety of power operations.","PeriodicalId":363603,"journal":{"name":"2023 5th International Conference on Electronic Engineering and Informatics (EEI)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th International Conference on Electronic Engineering and Informatics (EEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEI59236.2023.10212430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a video edge detection algorithm based on AI technology is presented to improve the accuracy of power operation safety monitoring. Firstly, the block and low rank tensor recovery video denoising algorithm is used to filter out internal noise in videos, which improves video clarity and makes video edge information more prominent. Secondly, the proximal support vector machine (PSVM) is used to detect the edges of denoised videos, thereby improving the effectiveness of video edge detection. The experimental results show that the proposed algorithm outperforms other algorithms in video edge detection, further ensuring the safety of power operations.
基于AI技术的电力运行监控视频边缘检测算法
为了提高电力运行安全监控的准确性,本文提出了一种基于人工智能技术的视频边缘检测算法。首先,采用分块和低秩张量恢复视频去噪算法滤除视频中的内部噪声,提高视频清晰度,使视频边缘信息更加突出;其次,利用近端支持向量机(PSVM)对去噪后的视频进行边缘检测,提高了视频边缘检测的有效性;实验结果表明,该算法在视频边缘检测方面优于其他算法,进一步保证了电源运行的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信