W. He, Yangjinan Hu, Lulu Wang, Zhongshi He, Jinglong Du
{"title":"Gating Feature Dense Network for Single Anisotropic Mr Image Super-Resolution","authors":"W. He, Yangjinan Hu, Lulu Wang, Zhongshi He, Jinglong Du","doi":"10.1109/ICASSP39728.2021.9414646","DOIUrl":null,"url":null,"abstract":"High resolution (HR) magnetic resonance (MR) images are crucial for medical diagnosis. However, in practice, low resolution MR images are often acquired due to hardware limitation. In this work, we propose a gating feature dense network to reconstruct HR MR images from low resolution acquisitions, where we use local residual dense block (LRDB) as the backbone. We propose gating mechanism, which includes absorption gate and release gate, to adaptively introduce the informative features of previous LRDBs to current LRDB to solve the problem of insufficient features sharing. The absorption gate can fuse the output feature of LRDBs with adaptive weights, which allows the model to adaptively learn the effects of different LRDBs for MR image super-resolution (SR). Experimental results show that our proposed method achieves a new state-of-the-art quantitative and visual performance in anisotropic MR image SR.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High resolution (HR) magnetic resonance (MR) images are crucial for medical diagnosis. However, in practice, low resolution MR images are often acquired due to hardware limitation. In this work, we propose a gating feature dense network to reconstruct HR MR images from low resolution acquisitions, where we use local residual dense block (LRDB) as the backbone. We propose gating mechanism, which includes absorption gate and release gate, to adaptively introduce the informative features of previous LRDBs to current LRDB to solve the problem of insufficient features sharing. The absorption gate can fuse the output feature of LRDBs with adaptive weights, which allows the model to adaptively learn the effects of different LRDBs for MR image super-resolution (SR). Experimental results show that our proposed method achieves a new state-of-the-art quantitative and visual performance in anisotropic MR image SR.