Spectral-Spatial Graph Convolutional Networks for Semel-Supervised Hyperspectral Image Classification

Anyong Qin, Chang Liu, Zhaowei Shang, Jinyu Tian
{"title":"Spectral-Spatial Graph Convolutional Networks for Semel-Supervised Hyperspectral Image Classification","authors":"Anyong Qin, Chang Liu, Zhaowei Shang, Jinyu Tian","doi":"10.1109/ICWAPR.2018.8521407","DOIUrl":null,"url":null,"abstract":"Collecting label samples is quite costly and time consuming for hyperspectral image (HSI) classification tasks. Semi-supervised learning framework, which combines the intrinsic information of labeled and unlabeled samples can alleviate the deficient labeled samples and increase the accuracy of HSI classification. In this paper, we propose a novel framework for semi-supervised learning on multiple spectral-spatial graphs that is based on graph convolutional networks (SGCN). In the filtering operation on graphs we consider the spatial information and spectral signatures of HSI simultaneously. The experimental results on three real-life HSI data sets, i.e. Botswana Hyperion, Kennedy Space Center, and Indian Pines, show that the proposed SGCN can significantly improve the classification accuracy. For instance, the over accuracy on Indian Pine data is increased from 78 % to 93 %.","PeriodicalId":385478,"journal":{"name":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2018.8521407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Collecting label samples is quite costly and time consuming for hyperspectral image (HSI) classification tasks. Semi-supervised learning framework, which combines the intrinsic information of labeled and unlabeled samples can alleviate the deficient labeled samples and increase the accuracy of HSI classification. In this paper, we propose a novel framework for semi-supervised learning on multiple spectral-spatial graphs that is based on graph convolutional networks (SGCN). In the filtering operation on graphs we consider the spatial information and spectral signatures of HSI simultaneously. The experimental results on three real-life HSI data sets, i.e. Botswana Hyperion, Kennedy Space Center, and Indian Pines, show that the proposed SGCN can significantly improve the classification accuracy. For instance, the over accuracy on Indian Pine data is increased from 78 % to 93 %.
基于semel监督的高光谱图像分类的光谱-空间图卷积网络
对于高光谱图像(HSI)的分类任务来说,标签样本的采集成本高、耗时长。半监督学习框架结合了标记样本和未标记样本的内在信息,可以缓解标记样本的缺陷,提高HSI分类的准确性。在本文中,我们提出了一种基于图卷积网络(SGCN)的多光谱空间图半监督学习的新框架。在图的滤波运算中,我们同时考虑了恒指的空间信息和光谱特征。在博茨瓦纳Hyperion、肯尼迪航天中心和Indian Pines三个真实HSI数据集上的实验结果表明,所提出的SGCN可以显著提高分类精度。例如,印度松木数据的超准确率从78%提高到93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信