A curve evolution approach for image segmentation using adaptive flows

Haihua Feng, D. Castañón, W. C. Karl
{"title":"A curve evolution approach for image segmentation using adaptive flows","authors":"Haihua Feng, D. Castañón, W. C. Karl","doi":"10.1109/ICCV.2001.937666","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a new active contour model for image segmentation using adaptive flows. This active contour model can be derived from minimizing a limiting form of the Mumford-Shah functional, where the segmented image is assumed to consist of piecewise constant regions. This paper is an extension of an active contour model developed by Chan-Vese. The segmentation method proposed in this paper adaptively estimates mean intensities for each separated region and uses a single curve to capture multiple regions with different intensities. The class of imagery that our new active model can handle is greater than the bimodal images. In particular, our method segments images with an arbitrary number of intensity levels and separated regions while avoiding the complexity of solving a full Mumford-Shah problem. The adaptive flow developed in this paper is easily formulated and solved using level set methods. We illustrate the performance of our segmentation methods on images generated by different modalities.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this paper, we develop a new active contour model for image segmentation using adaptive flows. This active contour model can be derived from minimizing a limiting form of the Mumford-Shah functional, where the segmented image is assumed to consist of piecewise constant regions. This paper is an extension of an active contour model developed by Chan-Vese. The segmentation method proposed in this paper adaptively estimates mean intensities for each separated region and uses a single curve to capture multiple regions with different intensities. The class of imagery that our new active model can handle is greater than the bimodal images. In particular, our method segments images with an arbitrary number of intensity levels and separated regions while avoiding the complexity of solving a full Mumford-Shah problem. The adaptive flow developed in this paper is easily formulated and solved using level set methods. We illustrate the performance of our segmentation methods on images generated by different modalities.
一种基于自适应流的图像分割曲线演化方法
在本文中,我们开发了一种新的自适应流图像分割活动轮廓模型。这种活动轮廓模型可以通过最小化Mumford-Shah泛函的极限形式得到,其中分割的图像被假设由分段常数区域组成。本文是Chan-Vese提出的活动轮廓模型的推广。本文提出的分割方法自适应估计每个分离区域的平均强度,并使用一条曲线捕获不同强度的多个区域。我们的新活动模型可以处理的图像类别大于双峰图像。特别是,我们的方法分割图像与任意数量的强度水平和分离区域,同时避免了解决一个完整的Mumford-Shah问题的复杂性。本文提出的自适应流易于用水平集方法表述和求解。我们演示了我们的分割方法在不同模态生成的图像上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信