Clutter Removal in Ground-Penetrating Radar Images Using Deep Neural Networks

Haihan Sun, Wei-Fang Cheng, Zheng Fan
{"title":"Clutter Removal in Ground-Penetrating Radar Images Using Deep Neural Networks","authors":"Haihan Sun, Wei-Fang Cheng, Zheng Fan","doi":"10.1109/ISAP53582.2022.9998650","DOIUrl":null,"url":null,"abstract":"The clutter in ground-penetrating radar (GPR) images obscures and disguises subsurface target reflections, which greatly challenges the accurate target identification. Conventional clutter removal methods suffer from limited clutter removal capability. They either leave residual clutter or deteriorate target reflections. To address the challenges in suppressing clutter in GPR radargrams, we present a deep learning-based method that leverages the powerful learning capability of the deep neural network to remove clutter in diverse real-world scenarios. The network takes the raw GPR radargram as the input, preserves the information related to target reflections and eliminates unwanted clutter features in an encoder-decoder manner, and finally reconstructs the clutter-free radargram. Experimental results demonstrate that the well-trained network successfully removes clutter and restores target reflections with consistent high performance in various real-world scenarios.","PeriodicalId":137840,"journal":{"name":"2022 International Symposium on Antennas and Propagation (ISAP)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Antennas and Propagation (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP53582.2022.9998650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The clutter in ground-penetrating radar (GPR) images obscures and disguises subsurface target reflections, which greatly challenges the accurate target identification. Conventional clutter removal methods suffer from limited clutter removal capability. They either leave residual clutter or deteriorate target reflections. To address the challenges in suppressing clutter in GPR radargrams, we present a deep learning-based method that leverages the powerful learning capability of the deep neural network to remove clutter in diverse real-world scenarios. The network takes the raw GPR radargram as the input, preserves the information related to target reflections and eliminates unwanted clutter features in an encoder-decoder manner, and finally reconstructs the clutter-free radargram. Experimental results demonstrate that the well-trained network successfully removes clutter and restores target reflections with consistent high performance in various real-world scenarios.
基于深度神经网络的探地雷达图像杂波去除
探地雷达图像中的杂波遮挡和掩盖了地下目标的反射,给目标的准确识别带来了很大的挑战。传统的杂波去除方法的杂波去除能力有限。它们要么留下残留的杂波,要么使目标反射变差。为了解决在GPR雷达图中抑制杂波的挑战,我们提出了一种基于深度学习的方法,利用深度神经网络的强大学习能力来去除各种现实场景中的杂波。该网络以原始探地雷达雷达图为输入,以编解码器的方式保留目标反射的相关信息,消除不需要的杂波特征,最终重构出无杂波雷达图。实验结果表明,经过良好训练的网络在各种现实场景下都能成功地去除杂波,恢复目标反射,并保持一致的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信