Association analysis with one scan of databases

Hao Huang, Xindong Wu, R. Relue
{"title":"Association analysis with one scan of databases","authors":"Hao Huang, Xindong Wu, R. Relue","doi":"10.1109/ICDM.2002.1184015","DOIUrl":null,"url":null,"abstract":"Mining frequent patterns with an FP-tree avoids costly candidate generation and repeatedly occurrence frequency checking against the support threshold. It therefore achieves better performance and efficiency than Apriori-like algorithms. However the database still needs to be scanned twice to get the FP-tree. This can be very time-consuming when new data are added to an existing database because two scans may be needed for not only the new data but also the existing data. This paper presents a new data structure P-tree, Pattern Tree, and a new technique, which can get the P-tree through only one scan of the database and can obtain the corresponding FP-tree with a specified support threshold. Updating a P-tree with new data needs one scan of the new data only, and the existing data do not need to be re-scanned.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1184015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

Mining frequent patterns with an FP-tree avoids costly candidate generation and repeatedly occurrence frequency checking against the support threshold. It therefore achieves better performance and efficiency than Apriori-like algorithms. However the database still needs to be scanned twice to get the FP-tree. This can be very time-consuming when new data are added to an existing database because two scans may be needed for not only the new data but also the existing data. This paper presents a new data structure P-tree, Pattern Tree, and a new technique, which can get the P-tree through only one scan of the database and can obtain the corresponding FP-tree with a specified support threshold. Updating a P-tree with new data needs one scan of the new data only, and the existing data do not need to be re-scanned.
通过一次数据库扫描进行关联分析
使用fp树挖掘频繁模式避免了昂贵的候选生成和根据支持阈值重复出现频率检查。因此,它比类apriori算法具有更好的性能和效率。但是,数据库仍然需要扫描两次才能获得fp树。当将新数据添加到现有数据库时,这可能非常耗时,因为不仅需要对新数据进行两次扫描,还需要对现有数据进行两次扫描。本文提出了一种新的数据结构P-tree——Pattern Tree,并提出了一种新的技术,该技术只需对数据库进行一次扫描即可得到P-tree,并且可以在指定的支持阈值下得到相应的FP-tree。使用新数据更新P-tree只需要扫描一次新数据,而不需要重新扫描现有数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信