Outlier Detection in Non-Linear Regression Analysis Based on the Normalizing Transformations

S. Prykhodko, N. Prykhodko, L. Makarova, A. Pukhalevych
{"title":"Outlier Detection in Non-Linear Regression Analysis Based on the Normalizing Transformations","authors":"S. Prykhodko, N. Prykhodko, L. Makarova, A. Pukhalevych","doi":"10.1109/TCSET49122.2020.235464","DOIUrl":null,"url":null,"abstract":"The statistical technique for detecting outliers in non-linear regression analysis of non-Gaussian data based on the normalizing transformations and prediction intervals is proposed. The application of the technique is considered for detecting outliers in four-variate non-Gaussian data, which used for constructing the three-factor non-linear regression model based on the normalizing transformations, both multivariate and univariate. We demonstrate that the width of the non-linear regression prediction interval based on the Johnson four-variate transformation is less than after using the Johnson and decimal logarithm univariate transformations.","PeriodicalId":389689,"journal":{"name":"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCSET49122.2020.235464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The statistical technique for detecting outliers in non-linear regression analysis of non-Gaussian data based on the normalizing transformations and prediction intervals is proposed. The application of the technique is considered for detecting outliers in four-variate non-Gaussian data, which used for constructing the three-factor non-linear regression model based on the normalizing transformations, both multivariate and univariate. We demonstrate that the width of the non-linear regression prediction interval based on the Johnson four-variate transformation is less than after using the Johnson and decimal logarithm univariate transformations.
基于归一化变换的非线性回归分析中的离群点检测
提出了一种基于归一化变换和预测区间的非高斯数据非线性回归分析异常点检测的统计技术。将该技术应用于四变量非高斯数据的异常点检测,并用于构建基于多变量和单变量归一化变换的三因素非线性回归模型。我们证明了基于Johnson四变量变换的非线性回归预测区间宽度小于使用Johnson和十进制对数单变量变换后的预测区间宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信